MHB Can the Kernel of a Ring Homomorphism Equal 12Z or 13Z?

  • Thread starter Thread starter AkilMAI
  • Start date Start date
  • Tags Tags
    Kernel
AkilMAI
Messages
73
Reaction score
0
Let f : Z ->C be a homomorphism of rings. Can the kernel of f be equal to 12Z or 13Z?
Ok,the way I'm thinking about it is using a proof by contradiction:asuming ker f=12Z...then by the First Isomorphism Theorem for rings Z/ker f ~im f where I am f is by definition a subring of C.But since I am f=12Z is not an integral domain and every subring in C is an integral domain the I am f will not be a subring oc C which is a contradiction.
The same thing with 13Z,is not equal with the kernel.
 
Physics news on Phys.org
Re: Kernerl and homomorphism

think about what happens to f(1).

if f(12) = 0, then f(12) = f(1 + 1 +...+ 1) = f(1) + f(1) +...+ f(1) = 12f(1) = 0.

since C is an integral domain, and 12 ≠ 0, f(1) = 0. but f(1) = 1, since f is a ring homomorphism.
 
Re: Kernerl and homomorphism

ok either ker f=12Z or ker f= {0}
f(n)=0>n*f(1)=0 but f(1)=1since f is a ring homomorphism.So ker f={0} or

Z/ker f is an integral domain since it is a subring of C =>ker f/=12Z. or ker f=/13
I'm I doing this wrong?
 
Re: Kernerl and homomorphism

f is ring homomorphism which means f(1) =1 must be
but if 12Z is the kernel this will drive us to f(1) =0 which contradict with the ring homomorphism
so 12Z,13Z can't be the kernel, ker(f) = {0}
 
Re: Kernerl and homomorphism

Thank you for the confirmation
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top