MHB Can the RMS-AM inequality prove the combinatorial coefficient inequality?

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion revolves around proving the inequality involving the sum of square roots of combinatorial coefficients from the expansion of (1+x)^n. The initial approach utilizes the RMS-AM inequality, leading to the expression that the sum is less than or equal to the square root of (2^n - 1) divided by n. Participants explore how to prove the relationship (2^n - 1)*n ≥ (2^n - 1)/n, confirming that n is a natural number greater than or equal to 1. The conversation concludes with one participant expressing gratitude for the assistance in reaching the solution. The discussion highlights the application of inequalities in combinatorial contexts.
Saitama
Messages
4,244
Reaction score
93
Problem:
Prove:
$$\sqrt{C_1}+\sqrt{C_2}+\sqrt{C_3}+...+\sqrt{C_n} \leq 2^{n-1}+\frac{n-1}{2}$$

where $C_0,C_1,C_2,...,C_n$ are combinatorial coefficients in the expansion of $(1+x)^n$, $n \in \mathbb{N}$.

Attempt:

I thought of using the RMS-AM inequality and got:

$$\sqrt{C_1}+\sqrt{C_2}+\sqrt{C_3}+...+\sqrt{C_n} \leq \sqrt{\frac{2^n-1}{n}}$$

Where I have used $C_1+C_2+C_3+...+C_n=2^n-1$.

But I don't see how to proceed from here.

Any help is appreciated. Thanks!
 
Last edited:
Mathematics news on Phys.org
use
$$(2^n-1)*n\geq\frac{(2^n-1)}{n}$$
and then $$AM\geq GM$$
for $$2^n-1$$ and $$n$$
 
mathworker said:
use
$$(2^n-1)*n\geq\frac{(2^n-1)}{n}$$
and then $$AM\geq GM$$
for $$2^n-1$$ and $$n$$

Thanks mathworker!

I was able to reach the answer but how do you prove $(2^n-1)*n\geq\frac{(2^n-1)}{n}$? :confused:
 
as $$C_0,C_1,C_2,...,C_n$$ are combinatorial coeffs of $$(1+x)^n$$. n is certainly an integer which is $$\geq 1 $$.
the rest is obvious...:)
 
mathworker said:
as $$C_0,C_1,C_2,...,C_n$$ are combinatorial coeffs of $$(1+x)^n$$. n is certainly an integer which is $$\geq 1 $$.
the rest is obvious...:)

Understood, thanks a lot mathworker! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top