MHB Can the Sum of Two Trigonometric Functions Be Less than pi/2?

AI Thread Summary
The discussion focuses on proving that the sum of two trigonometric functions, specifically f(x) = cos(sin(x)) + cos(cos(x)), is less than π/2 for x in the range [0, 2π). The derivative f'(x) is calculated to find relative maxima and minima, revealing that the maxima occur at x = 0 and x = π. At these points, the function evaluates to f(0) = f(π) = 1 + cos(1), which is approximately 1.5032. This value is confirmed to be less than π/2, supporting the initial claim. The conclusion is that the sum of the two functions indeed remains below π/2.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\cos(\sin x))+\cos(\cos x))<\dfrac{\pi}{2}$.
 
Mathematics news on Phys.org
[sp]There's a minimum of calculator work here. I'm assuming that's okay since I don't know an exact expression for cos(1).

Let [math]f(x) = cos( sin(x) ) + cos( cos(x) )[/math] (Let [math]0 \leq x < 2 \pi[/math] ).

Then [math]f'(x) = sin(sin(x)) \cdot ( 1 + cos( cos(x) ) )[/math] will give relative maxs and mins.

The maxima are found to be at [math]x = 0, ~ \pi[/math]. We can easily show that [math]f(0) = f( \pi ) = 1 + cos(1) \approx 1.5032 < \dfrac{ \pi }{2}[/math]
[/sp]

-Dan
 
Let $y=\sin x$ and $z=\cos x$.
Then we want to know if the maximum value of $\cos(\cos x)+\cos(\sin x)=\cos y+\cos z$ is less than $\frac\pi 2$ with the boundary condition $y^2+z^2=1$.

We can find the extrema with Lagrange multipliers.
Define $\Lambda(y,z,\lambda)=\cos y+\cos z-\lambda(y^2+z^2-1). \tag 1$

The extrema occur for $(y,z)$ with:
$$\begin{cases}\Lambda_y=-\sin y -2\lambda y = 0\\
\Lambda_z=-\sin z -2\lambda z = 0 \\
\Lambda_\lambda = -(y^2+z^2-1) = 0 \end{cases} \implies
\begin{cases}-2\lambda = \frac{\sin y}{y} \lor y=0 \\
-2\lambda = \frac{\sin z}{z} \lor z = 0 \\
y^2+z^2=1\end{cases} \implies
\begin{cases}\frac{\sin y}{y} = \frac{\sin z}{z} \lor y=0 \lor z=0 \\
y^2+z^2=1\end{cases} \tag 2
$$
So $(y,z)$ is on the unit circle and $-1\le y,z \le +1$.
Note that $\frac{\sin t}{t}$ is an even function that is bijective on the interval $(0,1]$. Therefore $\frac{\sin y}{y} = \frac{\sin z}{z} \implies y=\pm z$.
It follows that the extrema are when $(y,z)$ is $\left(\pm \frac 1{\sqrt 2},\pm \frac 1{\sqrt 2}\right)$ and/or $(0,\,\pm 1)$ and/or $(\pm 1,\,0)$.

Thus: $\cos(\sin x)+\cos(\cos x) \le \max\left[ \cos\left(\pm \frac 1{\sqrt 2}\right) + \cos\left(\pm \frac 1{\sqrt 2}\right),\,\cos(0) + \cos(\pm 1)\right]
=\max\left[2\cos\left(\frac 1{\sqrt 2}\right),\, 1+\cos 1\right] \tag 3$

From the Taylor expansion we get that $\cos x \le 1-\frac {x^2}2+\frac{x^4}{4!}$.
So $2\cos\left(\frac 1{\sqrt 2}\right) \le 2\left(1-\frac {1/2}2 + \frac {(1/2)^2}{24}\right)=1.5+\frac 1{48} \le 1.5 + \frac 1{20} = 1.55$ and $1+\cos 1 \le 1+ \left(1-\frac 12 + \frac 1{24}\right) \le 1.5 + \frac 1{20}=1.55$.

Finally we have that $\frac\pi 2 > \frac{3.14}{2} = 1.57$, which completes the proof since $1.55 < 1.57$.
 
Last edited:
Using $\cos x \leqslant 1 - \frac{x^2}2 + \frac{x^4}{24}$ (as in Klaas van Aarsen's solution), $$\begin{aligned}\cos(\sin x) + \cos(\cos x) &\leqslant 1 - \frac{\sin^2x}2 + \frac{\sin^4x}{24} + 1 - \frac{\cos^2x}2 + \frac{\cos^4x}{24} \\ &= 2 - \frac{\sin^2x + \cos^2x}2 + \frac{\sin^4x + \cos^4x}{24} \\ &< \frac32 + \frac{(\sin^2x + \cos^2x)^2}{24} = \frac{37}{24} < 1.55 < 1.57 <\frac{\pi}2.\end{aligned}$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
28
Views
3K
Replies
7
Views
2K
Replies
7
Views
1K
Replies
2
Views
1K
Replies
5
Views
2K
Replies
2
Views
1K
Back
Top