Can the Sum of Two Trigonometric Functions Be Less than pi/2?

Click For Summary
SUMMARY

The discussion centers on proving that the sum of two trigonometric functions, specifically \( \cos(\sin x) + \cos(\cos x) \), is less than \( \frac{\pi}{2} \) for \( 0 \leq x < 2\pi \). The function \( f(x) = \cos(\sin(x)) + \cos(\cos(x)) \) is analyzed using its derivative \( f'(x) = \sin(\sin(x)) \cdot (1 + \cos(\cos(x))) \) to identify relative maxima and minima. The maxima occur at \( x = 0 \) and \( x \approx \pi \), yielding \( f(0) = f(\pi) = 1 + \cos(1) \approx 1.5032 \), which is confirmed to be less than \( \frac{\pi}{2} \).

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Knowledge of calculus, specifically derivatives and critical points
  • Familiarity with the unit circle and radians
  • Basic calculator skills for evaluating trigonometric values
NEXT STEPS
  • Study the behavior of trigonometric functions over their periodic intervals
  • Learn about the applications of derivatives in finding maxima and minima
  • Explore the implications of trigonometric inequalities in mathematical proofs
  • Investigate the properties of the cosine function and its transformations
USEFUL FOR

Mathematics students, educators, and anyone interested in trigonometric analysis and calculus applications will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\cos(\sin x))+\cos(\cos x))<\dfrac{\pi}{2}$.
 
Mathematics news on Phys.org
[sp]There's a minimum of calculator work here. I'm assuming that's okay since I don't know an exact expression for cos(1).

Let [math]f(x) = cos( sin(x) ) + cos( cos(x) )[/math] (Let [math]0 \leq x < 2 \pi[/math] ).

Then [math]f'(x) = sin(sin(x)) \cdot ( 1 + cos( cos(x) ) )[/math] will give relative maxs and mins.

The maxima are found to be at [math]x = 0, ~ \pi[/math]. We can easily show that [math]f(0) = f( \pi ) = 1 + cos(1) \approx 1.5032 < \dfrac{ \pi }{2}[/math]
[/sp]

-Dan
 
Let $y=\sin x$ and $z=\cos x$.
Then we want to know if the maximum value of $\cos(\cos x)+\cos(\sin x)=\cos y+\cos z$ is less than $\frac\pi 2$ with the boundary condition $y^2+z^2=1$.

We can find the extrema with Lagrange multipliers.
Define $\Lambda(y,z,\lambda)=\cos y+\cos z-\lambda(y^2+z^2-1). \tag 1$

The extrema occur for $(y,z)$ with:
$$\begin{cases}\Lambda_y=-\sin y -2\lambda y = 0\\
\Lambda_z=-\sin z -2\lambda z = 0 \\
\Lambda_\lambda = -(y^2+z^2-1) = 0 \end{cases} \implies
\begin{cases}-2\lambda = \frac{\sin y}{y} \lor y=0 \\
-2\lambda = \frac{\sin z}{z} \lor z = 0 \\
y^2+z^2=1\end{cases} \implies
\begin{cases}\frac{\sin y}{y} = \frac{\sin z}{z} \lor y=0 \lor z=0 \\
y^2+z^2=1\end{cases} \tag 2
$$
So $(y,z)$ is on the unit circle and $-1\le y,z \le +1$.
Note that $\frac{\sin t}{t}$ is an even function that is bijective on the interval $(0,1]$. Therefore $\frac{\sin y}{y} = \frac{\sin z}{z} \implies y=\pm z$.
It follows that the extrema are when $(y,z)$ is $\left(\pm \frac 1{\sqrt 2},\pm \frac 1{\sqrt 2}\right)$ and/or $(0,\,\pm 1)$ and/or $(\pm 1,\,0)$.

Thus: $\cos(\sin x)+\cos(\cos x) \le \max\left[ \cos\left(\pm \frac 1{\sqrt 2}\right) + \cos\left(\pm \frac 1{\sqrt 2}\right),\,\cos(0) + \cos(\pm 1)\right]
=\max\left[2\cos\left(\frac 1{\sqrt 2}\right),\, 1+\cos 1\right] \tag 3$

From the Taylor expansion we get that $\cos x \le 1-\frac {x^2}2+\frac{x^4}{4!}$.
So $2\cos\left(\frac 1{\sqrt 2}\right) \le 2\left(1-\frac {1/2}2 + \frac {(1/2)^2}{24}\right)=1.5+\frac 1{48} \le 1.5 + \frac 1{20} = 1.55$ and $1+\cos 1 \le 1+ \left(1-\frac 12 + \frac 1{24}\right) \le 1.5 + \frac 1{20}=1.55$.

Finally we have that $\frac\pi 2 > \frac{3.14}{2} = 1.57$, which completes the proof since $1.55 < 1.57$.
 
Last edited:
Using $\cos x \leqslant 1 - \frac{x^2}2 + \frac{x^4}{24}$ (as in Klaas van Aarsen's solution), $$\begin{aligned}\cos(\sin x) + \cos(\cos x) &\leqslant 1 - \frac{\sin^2x}2 + \frac{\sin^4x}{24} + 1 - \frac{\cos^2x}2 + \frac{\cos^4x}{24} \\ &= 2 - \frac{\sin^2x + \cos^2x}2 + \frac{\sin^4x + \cos^4x}{24} \\ &< \frac32 + \frac{(\sin^2x + \cos^2x)^2}{24} = \frac{37}{24} < 1.55 < 1.57 <\frac{\pi}2.\end{aligned}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K