Albert1
- 1,221
- 0
Given:
$$x>0,\, n\in\mathbb{N}$$
Prove:
$$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n$$
$$x>0,\, n\in\mathbb{N}$$
Prove:
$$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n$$
Last edited by a moderator: