MHB Can This Product Inequality Be Proven for Positive x and Natural n?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality Proof
AI Thread Summary
The discussion focuses on proving the inequality $$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n $$ for positive x and natural n. It is established that for x=1, both sides equal 2^n, leading to separate analyses for the cases where 0<x<1 and x>1. For x>1, a difference equation approach shows that the product α_n(x) is greater than or equal to the sequence γ_n(x) and the expression β_n(x). The case for 0<x<1 is set to be analyzed in a subsequent post, indicating a structured approach to proving the inequality. The discussion also references the AM-GM inequality to support the argument.
Albert1
Messages
1,221
Reaction score
0
Given:

$$x>0,\, n\in\mathbb{N}$$

Prove:

$$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n$$
 
Last edited by a moderator:
Mathematics news on Phys.org
Albert said:
Given:

$$x>0,\, n\in\mathbb{N}$$

Prove:

$$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n$$

Let's define...

$\displaystyle \alpha_{n} (x) = \prod_{k=1}^{n} (1 + x^{k})$

$\displaystyle \beta_{n} (x) = (1 + x^{\frac{n+1}{2}})^{n}\ (1)$

For x=1 is $\displaystyle \alpha_{n} = \beta_{n} = 2^{n}$, so that we analyse separately the two cases $\displaystyle 0<x<1$ and $\displaystyle x>1$. If $\displaystyle x>1$ we observe that $\alpha_{n}$ obeys to the difference equation...

$\displaystyle \alpha_{n+1} (x) = \alpha_{n}(x)\ (1+x^{n+1}),\ \alpha_{1}(x)= 1+x\ (2)$

... and if we call $\gamma_{n} (x)$ the sequence that obeys to the difference equation...

$\displaystyle \gamma_{n+1} (x) = \gamma_{n}(x)\ (1+x^{\frac{n+1}{2}}),\ \gamma_{1}(x)= 1+x\ (3)$

... we conclude that for $\displaystyle x>1$ is...

$\displaystyle \alpha_{n}(x) \ge \gamma_{n}(x) \ge \beta_{n}(x)\ (4)$

The case $\displaystyle 0 < x < 1$ will be analysed in next post...

Kind regards

$\chi$ $\sigma$
 
we have x^a + x^b >= 2x^(a+b)/2 by AM GM inequality

adding 1 + x^(a+b) on both sides we get

(1+x^a)(1+x^b) >= 1 + 2x^(a+b)/2 + x^(a+b) = ( 1+ x^(a+b)/2)^2

Putting b = n+ 1 -a we get

(1+x^a)(1+x^(n+1- a) >= (1+ x^(n+1)/2)^2

For n even taking a from 1 to n/2 we get n/2 expressions and multiplying them out we get

(1+x)(1+x^2)( 1 + x^3) .. (1+x^n) >= (1+ x^(n+1)/2)^n as

For n odd we have n-1 ( running a from 1 to (n-1)/2 we get (n-1)/2 pairs and

As (1+x^(n+1)/2)= (1+x^(n+1)/2) and multiplying we get the result
 
Albert said:
Given:

$$x>0,\, n\in\mathbb{N}$$

Prove:

$$ (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n$$
Since $x^k + x^{n+1-k} - 2x^{(n+1)/2} = \bigl(x^{k/2} - x^{(n+1-k)/2}\bigr)^2 \geqslant0$, it follows that $x^k+ x^{n+1-k} \geqslant 2x^{(n+1)/2}.$ Add $1 + x^{n+1}$ to each side to see that $$(1+x^k)(1+x^{n+1-k}) = 1 + x^k+ x^{n+1-k} + x^{n+1} \geqslant 1 + 2x^{(n+1)/2} + x^{n+1} = \bigl(1 + x^{(n+1)/2}\bigr)^2.$$ If $n$ is even, multiply together the inequalities $(1+x^k)(1+x^{n+1-k}) \geqslant \bigl(1 + x^{(n+1)/2}\bigr)^2$ for $k=1,2,\ldots,n/2$ to get the result. If $n$ is odd, multiply the inequalities for $k=1,2,\ldots,(n-1)/2$, and then multiply each side by a further factor $(1 + x^{(n+1)/2})$.Edit. http://www.mathhelpboards.com/members/kaliprasad/ got there first.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
12
Views
2K
Replies
1
Views
627
Replies
6
Views
2K
Replies
7
Views
2K
Replies
4
Views
1K
Replies
1
Views
2K
Back
Top