Can this project revolutionize surfing?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Radicals
Click For Summary
SUMMARY

The limit calculation discussed involves finding the limit as \( x \) approaches 2 for the expression \( \dfrac{\sqrt{6-x}-2}{\sqrt{3-x}-1} \). The solution requires rationalizing both the numerator and the denominator, leading to the final result of \( \dfrac{1}{2} \). The steps include multiplying by the conjugate and simplifying the expression to eliminate the indeterminate form. The final limit is confirmed as \( \dfrac{1}{2} \).

PREREQUISITES
  • Understanding of limits in calculus
  • Knowledge of rationalizing expressions
  • Familiarity with square roots and their properties
  • Ability to manipulate algebraic fractions
NEXT STEPS
  • Study the concept of limits in calculus, focusing on indeterminate forms
  • Learn techniques for rationalizing both numerators and denominators
  • Explore the properties of square roots in limit calculations
  • Practice solving similar limit problems using various algebraic techniques
USEFUL FOR

Students and educators in calculus, mathematicians focusing on limit problems, and anyone looking to enhance their algebraic manipulation skills in calculus contexts.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
find limit $\displaystyle \lim_{x \to 2}\dfrac{\sqrt{6-x}{-2}}{\sqrt{3-x}-1}$
ok I presnume the first thing to do is mulitply by conjugate
 
Physics news on Phys.org
karush said:
find limit $\displaystyle \lim_{x \to 2}\dfrac{\sqrt{6-x}{-2}}{\sqrt{3-x}-1}$
ok I presnume the first thing to do is mulitply by conjugate
Yes, rationalizing the denominator would be step 1, resulting in

$\displaystyle \lim_{x \to 2} \dfrac{\sqrt{6-x}-2}{2-x} \cdot \lim_{x \to 2} (\sqrt{3-x}+1)$

step 2 would be rationalizing the numerator of the first limit in the product of limitsStep 2 would
 
skeeter said:
step 2 would be rationalizing the numerator of the first limit in the product of limits

$\displaystyle \left[ \dfrac{\sqrt{6-x}-2}{2-x}
\cdot \dfrac{\sqrt{6-x}+2}{\sqrt{6-x}+2}
\right]=\frac{\sqrt{-x+3}+1}{\sqrt{-x+6}+2}$
plug in 2
$\dfrac{\sqrt{-2+3}+1}{\sqrt{-2+6}+2}=\dfrac{1}{2}$
hopefully
 
karush said:
$\displaystyle \left[ \dfrac{\sqrt{6-x}-2}{2-x}
\cdot \dfrac{\sqrt{6-x}+2}{\sqrt{6-x}+2}
\right]=\frac{\sqrt{-x+3}+1}{\sqrt{-x+6}+2}$

?
 
skeeter said:
?
isn't $\dfrac{1}{2}$ the answer
 
yes, but that quoted equation you posted is not correct
 
$\:\left[\frac{\sqrt{6-x}-2}{2-x}\cdot \frac{\sqrt{6-x}+2}{\sqrt{6-x}+2}\right]:\quad \frac{\sqrt{6-x}-2}{2-x}$

as $x \to 2 $ then $=\dfrac{1}{2}$

however I didn't understand the denominator becoming 0
 
$\dfrac{\sqrt{6-x}-2}{2-x} \cdot \dfrac{\sqrt{6-x}+2}{\sqrt{6-x}+2} = \dfrac{(6-x)-4}{(2-x)(\sqrt{6-x}+2)} = \dfrac{\cancel{2-x}}{\cancel{(2-x)}(\sqrt{6-x}+2)} = \dfrac{1}{\sqrt{6-x}+2}$

return to the limit product from post #2

$\displaystyle \lim_{x \to 2} \dfrac{1}{\sqrt{6-x}+2} \cdot \lim_{x \to 2} (\sqrt{3-x}+1)$

$\dfrac{1}{4} \cdot 2 = \dfrac{1}{2}$
 
ok I see the calcular was making the 2nd fraction = to 1
...
A project I am developing ,,, its a lot more than I thot

https://dl.orangedox.com/EAwBaH3HAWsQbCDhxF
stn00.png

Surf the Nations back Entry
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
953
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K