MHB Can Two Numbers Satisfy These Exponential Conditions?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Application
mathdad
Messages
1,280
Reaction score
0
Find two different numbers such that the sum of their squares shall equal a cube, and the sum of their cubes equal a square.

Set up:

x^2 + y^2 = z^3
x^3 + y^3 = z^2

Is this correct?
 
Mathematics news on Phys.org
The cube and the square on the RHS need not be of the same number.
 
greg1313 said:
The cube and the square on the RHS need not be of the same number.
x^2 + y^2 = z^3
x^3 + y^3 = w^2
 
Let's let $x=0$ so that we have:

$$y^2=z^3$$

$$y^3=w^2$$

Dividing the latter by the former, we have:

$$y=\frac{w^2}{z^3}$$

Suppose we let $w=z^2$...

$$y=z$$

This implies:

$$y^3-y^2=y^2(y-1)=0$$

Because of the cyclical symmetry, this yields:

$$(x,y)\in\{(0,0),(0,1),(1,0)\}$$

There may or may not be more pairs that work, but we have found at least one pair satisfying the problem. :)
 
Very impressive reply. This is, in my opinion, the best math skill to master. The ability to transform applications to equations is uniquely important.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
11
Views
2K
Replies
4
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
10
Views
2K
Back
Top