MHB Can Two Numbers Satisfy These Exponential Conditions?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Application
Click For Summary
The discussion explores finding two distinct numbers, x and y, such that the sum of their squares equals a cube (z^3) and the sum of their cubes equals a square (w^2). The equations x^2 + y^2 = z^3 and x^3 + y^3 = w^2 are analyzed, leading to the simplification where y is expressed in terms of w and z. By setting w as z^2, it is deduced that y equals z, resulting in the pairs (0,0), (0,1), and (1,0) as potential solutions. The conversation emphasizes the importance of transforming real-world applications into mathematical equations, highlighting a key mathematical skill. The exploration confirms at least one valid pair that satisfies the given conditions.
mathdad
Messages
1,280
Reaction score
0
Find two different numbers such that the sum of their squares shall equal a cube, and the sum of their cubes equal a square.

Set up:

x^2 + y^2 = z^3
x^3 + y^3 = z^2

Is this correct?
 
Mathematics news on Phys.org
The cube and the square on the RHS need not be of the same number.
 
greg1313 said:
The cube and the square on the RHS need not be of the same number.
x^2 + y^2 = z^3
x^3 + y^3 = w^2
 
Let's let $x=0$ so that we have:

$$y^2=z^3$$

$$y^3=w^2$$

Dividing the latter by the former, we have:

$$y=\frac{w^2}{z^3}$$

Suppose we let $w=z^2$...

$$y=z$$

This implies:

$$y^3-y^2=y^2(y-1)=0$$

Because of the cyclical symmetry, this yields:

$$(x,y)\in\{(0,0),(0,1),(1,0)\}$$

There may or may not be more pairs that work, but we have found at least one pair satisfying the problem. :)
 
Very impressive reply. This is, in my opinion, the best math skill to master. The ability to transform applications to equations is uniquely important.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
411