MHB Can We Construct a Triangle with Given Lengths and Find Its Area?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Area Triangle
Albert1
Messages
1,221
Reaction score
0
$a,b,c,d >0$,
please prove we can construct an triangle with length:
$\sqrt{b^2+c^2},\sqrt{a^2+c^2+d^2+2ac},\sqrt{a^2+b^2+d^2+2bd}$
and find the area of the triangle
 
Last edited:
Mathematics news on Phys.org
Let
Q1 = b^2 + c^2;
Q2 = a^2 + c^2 + d^2 + 2 a c;
Q3 = a^2 + b^2 + d^2 + 2 b d;

Using: 16 Area^2 = Archimedes[ Q1, Q2, Q3]

I get
Area = $$\frac{1}{4} \sqrt{4 \left(b^2+c^2\right) \left(a^2+2 a c+c^2+d^2\right)-\left(2 a^2+2 a c+2 b^2+2 b d+2 c^2+2 d^2\right)^2}$$
 
Last edited by a moderator:

Attachments

  • rectangle.png
    rectangle.png
    3.3 KB · Views: 105
Last edited by a moderator:
Removing triangle areas from rectangle:

ABCD = (a + c) (b + d);
AEF = c b/2;
DCF = a (b + d)/2;
BCE = d (a + c)/2;
A = ABCD - AEF - DCF - BCE
FullSimplify[A]

A = $\frac{1}{2} (a b+c (b+d))$
 
Last edited:
RLBrown said:
Let
Q1 = b^2 + c^2;
Q2 = a^2 + c^2 + d^2 + 2 a c;
Q3 = a^2 + b^2 + d^2 + 2 b d;

Using: 16 Area^2 = Archimedes[ Q1, Q2, Q3]

I get
Area = $$\frac{1}{4} \sqrt{4 \left(b^2+c^2\right) \left(a^2+2 a c+c^2+d^2\right)-\left(2 a^2+2 a c+2 b^2+2 b d+2 c^2+2 d^2\right)^2}$$

Miss Application of Archimedes Formula:
CORRECTION:
Q1=b^2+c^2;
Q2=a^2+c^2+d^2+2 a c;
Q3=a^2+b^2+d^2+2 b d;
Arc = 4 Q1 Q2 -( Q1+ Q2-Q3 )^2
$$\text{FullSimplify}\left[\sqrt{\frac{\text{Arc}}{16}}\right]$$
$$\frac{1}{2} (a b+c (b+d))$$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top