MHB Can We Construct a Triangle with Given Lengths and Find Its Area?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Area Triangle
Albert1
Messages
1,221
Reaction score
0
$a,b,c,d >0$,
please prove we can construct an triangle with length:
$\sqrt{b^2+c^2},\sqrt{a^2+c^2+d^2+2ac},\sqrt{a^2+b^2+d^2+2bd}$
and find the area of the triangle
 
Last edited:
Mathematics news on Phys.org
Let
Q1 = b^2 + c^2;
Q2 = a^2 + c^2 + d^2 + 2 a c;
Q3 = a^2 + b^2 + d^2 + 2 b d;

Using: 16 Area^2 = Archimedes[ Q1, Q2, Q3]

I get
Area = $$\frac{1}{4} \sqrt{4 \left(b^2+c^2\right) \left(a^2+2 a c+c^2+d^2\right)-\left(2 a^2+2 a c+2 b^2+2 b d+2 c^2+2 d^2\right)^2}$$
 
Last edited by a moderator:

Attachments

  • rectangle.png
    rectangle.png
    3.3 KB · Views: 102
Last edited by a moderator:
Removing triangle areas from rectangle:

ABCD = (a + c) (b + d);
AEF = c b/2;
DCF = a (b + d)/2;
BCE = d (a + c)/2;
A = ABCD - AEF - DCF - BCE
FullSimplify[A]

A = $\frac{1}{2} (a b+c (b+d))$
 
Last edited:
RLBrown said:
Let
Q1 = b^2 + c^2;
Q2 = a^2 + c^2 + d^2 + 2 a c;
Q3 = a^2 + b^2 + d^2 + 2 b d;

Using: 16 Area^2 = Archimedes[ Q1, Q2, Q3]

I get
Area = $$\frac{1}{4} \sqrt{4 \left(b^2+c^2\right) \left(a^2+2 a c+c^2+d^2\right)-\left(2 a^2+2 a c+2 b^2+2 b d+2 c^2+2 d^2\right)^2}$$

Miss Application of Archimedes Formula:
CORRECTION:
Q1=b^2+c^2;
Q2=a^2+c^2+d^2+2 a c;
Q3=a^2+b^2+d^2+2 b d;
Arc = 4 Q1 Q2 -( Q1+ Q2-Q3 )^2
$$\text{FullSimplify}\left[\sqrt{\frac{\text{Arc}}{16}}\right]$$
$$\frac{1}{2} (a b+c (b+d))$$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top