MHB Can We Construct a Triangle with Given Lengths and Find Its Area?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Area Triangle
Click For Summary
A triangle can be constructed with the specified lengths derived from the expressions involving variables a, b, c, and d. The construction relies on the triangle inequality, which must be satisfied for the lengths to form a valid triangle. Additionally, the area of the triangle can be calculated using the corrected application of Archimedes' formula. The discussion emphasizes the importance of ensuring the conditions for triangle formation are met before proceeding to calculate the area. The mathematical proof and area calculation are essential for validating the construction of the triangle.
Albert1
Messages
1,221
Reaction score
0
$a,b,c,d >0$,
please prove we can construct an triangle with length:
$\sqrt{b^2+c^2},\sqrt{a^2+c^2+d^2+2ac},\sqrt{a^2+b^2+d^2+2bd}$
and find the area of the triangle
 
Last edited:
Mathematics news on Phys.org
Let
Q1 = b^2 + c^2;
Q2 = a^2 + c^2 + d^2 + 2 a c;
Q3 = a^2 + b^2 + d^2 + 2 b d;

Using: 16 Area^2 = Archimedes[ Q1, Q2, Q3]

I get
Area = $$\frac{1}{4} \sqrt{4 \left(b^2+c^2\right) \left(a^2+2 a c+c^2+d^2\right)-\left(2 a^2+2 a c+2 b^2+2 b d+2 c^2+2 d^2\right)^2}$$
 
Last edited by a moderator:

Attachments

  • rectangle.png
    rectangle.png
    3.3 KB · Views: 107
Last edited by a moderator:
Removing triangle areas from rectangle:

ABCD = (a + c) (b + d);
AEF = c b/2;
DCF = a (b + d)/2;
BCE = d (a + c)/2;
A = ABCD - AEF - DCF - BCE
FullSimplify[A]

A = $\frac{1}{2} (a b+c (b+d))$
 
Last edited:
RLBrown said:
Let
Q1 = b^2 + c^2;
Q2 = a^2 + c^2 + d^2 + 2 a c;
Q3 = a^2 + b^2 + d^2 + 2 b d;

Using: 16 Area^2 = Archimedes[ Q1, Q2, Q3]

I get
Area = $$\frac{1}{4} \sqrt{4 \left(b^2+c^2\right) \left(a^2+2 a c+c^2+d^2\right)-\left(2 a^2+2 a c+2 b^2+2 b d+2 c^2+2 d^2\right)^2}$$

Miss Application of Archimedes Formula:
CORRECTION:
Q1=b^2+c^2;
Q2=a^2+c^2+d^2+2 a c;
Q3=a^2+b^2+d^2+2 b d;
Arc = 4 Q1 Q2 -( Q1+ Q2-Q3 )^2
$$\text{FullSimplify}\left[\sqrt{\frac{\text{Arc}}{16}}\right]$$
$$\frac{1}{2} (a b+c (b+d))$$
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K