MHB Can We Prove This Inequality Challenge IV?

Click For Summary
The inequality challenge involves proving that $\dfrac{1}{\sqrt{4x}} \le \left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right) < \dfrac{1}{\sqrt{2x}}$. A sequence defined as $a_{n} = \prod_{k=1}^{n} (1 - \frac{1}{2k})$ is introduced, which satisfies the difference equation $a_{n+1} - a_{n} = - \frac{a_{n}}{2n}$. This sequence approximates the ordinary differential equation $y' = -\frac{1}{2x}$, leading to the conclusion that $a_{n} \sim \frac{a_{1}}{\sqrt{n}}$. The discussion emphasizes the mathematical derivation and implications of the inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\dfrac{1}{\sqrt{4x}}\le\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)<\dfrac{1}{\sqrt{2x}}$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\dfrac{1}{\sqrt{4x}}\le\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)<\dfrac{1}{\sqrt{2x}}$.

[sp]Setting $\displaystyle a_{n}= \prod_{k=1}^{n} (1 - \frac{1}{2\ k})$, You can verify that $a_{n}$ obeys to the difference equation...

$\displaystyle a_{n+1} - a_{n} = - \frac{a_{n}}{2\ n}, a_{1} = \frac{1}{2}\ (1)$But (1) approximates the ODE $\displaystyle y^{\ '} = - \frac{1}{2\ x}$ the solution of which is $\displaystyle y = \frac{c}{\sqrt{x}}$, where is $c= y(1)$, so that is $a_{n} \sim \frac{a_{1}}{\sqrt{n}}$ and that leads to the conclusion.[/sp]

Kind regards

$\chi$ $\sigma$
 
Thanks for participating, chisigma!:)

Solution suggested by other:

Let $A=\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)$ and $B=\left( \dfrac{2}{3} \right)\left( \dfrac{4}{5} \right)\cdots\left( \dfrac{2x-2}{2x-1} \right)$

We have $AB=\dfrac{1}{2x}$.

Notice that $\dfrac{1}{2}<\dfrac{2}{3}<\dfrac{3}{4}<\cdots<\dfrac{2x-1}{2x}$, $\therefore 2A\ge B$ so $2A^2 \ge AB=\dfrac{1}{2x}$ and from here we get$A\ge \dfrac{1}{\sqrt{4x}}$.

On the other hand, we have $A<B$, hence $A^2<AB=\dfrac{1}{2x}$ and from here we get $A<\dfrac{1}{\sqrt{2x}}$.

And therefore we reach to the desired inequality.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K