MHB Can We Prove This Inequality Challenge IV?

AI Thread Summary
The inequality challenge involves proving that $\dfrac{1}{\sqrt{4x}} \le \left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right) < \dfrac{1}{\sqrt{2x}}$. A sequence defined as $a_{n} = \prod_{k=1}^{n} (1 - \frac{1}{2k})$ is introduced, which satisfies the difference equation $a_{n+1} - a_{n} = - \frac{a_{n}}{2n}$. This sequence approximates the ordinary differential equation $y' = -\frac{1}{2x}$, leading to the conclusion that $a_{n} \sim \frac{a_{1}}{\sqrt{n}}$. The discussion emphasizes the mathematical derivation and implications of the inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\dfrac{1}{\sqrt{4x}}\le\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)<\dfrac{1}{\sqrt{2x}}$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\dfrac{1}{\sqrt{4x}}\le\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)<\dfrac{1}{\sqrt{2x}}$.

[sp]Setting $\displaystyle a_{n}= \prod_{k=1}^{n} (1 - \frac{1}{2\ k})$, You can verify that $a_{n}$ obeys to the difference equation...

$\displaystyle a_{n+1} - a_{n} = - \frac{a_{n}}{2\ n}, a_{1} = \frac{1}{2}\ (1)$But (1) approximates the ODE $\displaystyle y^{\ '} = - \frac{1}{2\ x}$ the solution of which is $\displaystyle y = \frac{c}{\sqrt{x}}$, where is $c= y(1)$, so that is $a_{n} \sim \frac{a_{1}}{\sqrt{n}}$ and that leads to the conclusion.[/sp]

Kind regards

$\chi$ $\sigma$
 
Thanks for participating, chisigma!:)

Solution suggested by other:

Let $A=\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)$ and $B=\left( \dfrac{2}{3} \right)\left( \dfrac{4}{5} \right)\cdots\left( \dfrac{2x-2}{2x-1} \right)$

We have $AB=\dfrac{1}{2x}$.

Notice that $\dfrac{1}{2}<\dfrac{2}{3}<\dfrac{3}{4}<\cdots<\dfrac{2x-1}{2x}$, $\therefore 2A\ge B$ so $2A^2 \ge AB=\dfrac{1}{2x}$ and from here we get$A\ge \dfrac{1}{\sqrt{4x}}$.

On the other hand, we have $A<B$, hence $A^2<AB=\dfrac{1}{2x}$ and from here we get $A<\dfrac{1}{\sqrt{2x}}$.

And therefore we reach to the desired inequality.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top