Can x, y, and z be the side lengths of a triangle?

Click For Summary
SUMMARY

The discussion centers on proving the relationship between the angles of a triangle and their half-angle sine values. The key equation established is $sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=1$, which holds true if and only if the angles satisfy $A+B+C=\pi$. Participants clarify that if $x, y, z$ are defined as $x=\sin\frac{A}{2}, y=\sin\frac{B}{2}, z=\sin\frac{C}{2}$, then the condition $x^2y^2+z^2+2xyz=1$ implies the existence of triangle ABC. The proof requires demonstrating the converse relationship.

PREREQUISITES
  • Understanding of trigonometric identities, specifically sine functions.
  • Familiarity with triangle properties and angle relationships.
  • Knowledge of quadratic equations and their implications in real numbers.
  • Basic proof techniques in geometry and trigonometry.
NEXT STEPS
  • Study the implications of the Law of Sines in triangle geometry.
  • Learn about the properties of half-angle formulas in trigonometry.
  • Investigate the relationship between sine values and triangle inequalities.
  • Explore advanced proof techniques in geometry, particularly in relation to angle sums.
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying trigonometry and triangle properties will benefit from this discussion. It is particularly relevant for those interested in proofs involving trigonometric identities and their applications in geometry.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let ABC be a triangle. Prove that $sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=1$.
Conversely, prove that if x, y and z are positive real numbers such that $x^2y^2+z^2+2xyz=1$, then there is a triangle ABC such that $x=sin\frac{A}{2}, y=sin\frac{B}{2}, z=sin\frac{C}{2}$.

I can solve the first part of the question.
My problem is I can't see a way to proceed with the second half of the question.

They are closely-related, I know, but I just couldn't see the right way to go.(Thinking)

Any help/hint would be deeply appreciated.

Thanks.
 
Mathematics news on Phys.org
The first step would be to prove that $x,\ y,\ z\le 1$.

$x^2+y^2+z^2+2xyz=1$

Viewing this as a quadratic equation in $x$, we get

$\displaystyle x= \frac{-2yz\pm\sqrt{4y^2z^2-4(y^2+z^2-1)}}{2}$

Since $x$ is real, we must have

$4y^2z^2-4(y^2+z^2-1)\ge 0$

$y^2z^2-y^2-z^2+1\ge 0$

$y^2(z^2-1)-(z^2-1)\ge 0$

$(y^2-1)(z^2-1)\ge 0$

Similarly,

$(x^2-1)(y^2-1)\ge 0$

$(x^2-1)(z^2-1)\ge 0$

Either $x,\ y,\ z\le 1$ or $x,\ y,\ z\ge 1$.

$x,\ y,\ z\ge 1\implies x^2+y^2+z^2+2xyz\ge 5$ (contradiction)

So, $x,\ y,\ z\le 1$

We can let $x=\sin X,\ y=\sin Y,\ z=\sin Z$.

$\sin ^2X+\sin ^2Y+\sin^2Z+2\sin X\sin Y\sin Z=1$.

We now need to show that $\displaystyle X+Y+Z=\frac{\pi}{2}$.

---------- Post added at 12:14 PM ---------- Previous post was at 11:19 AM ----------

anemone said:
I can solve the first part of the question.

Could you post the solution? It may help me complete the proof.
 
Last edited:
Thanks for showing the great way to prove that $ x, y, z \leq 1.$, Alexmahone.

BTW, I don't think we need to let $x=sinX, y=sinY, z=sinZ $ so that proving $X+Y+Z=\frac{\pi}{2}$ will show the desired result.

I think we need to let $x=sin(\frac{A}{2}), y=sin(\frac{B}{2}), z=sin(\frac{C}{2}) $ because with these substitutions and from the given equation where $x^2y^2+z^2+2xyz=1$, we'll obtain the following equation:
$sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=1$.

And the equation above is true iff $A+B+C=\pi$, i.e. there exists a triangle ABC under the given conditions.

(P.S. Do you still want my working on the first part of the question? I'll show it if you want to have a look on it.)
 
anemone said:
$sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=1$.

And the equation above is true iff $A+B+C=\pi$, i.e. there exists a triangle ABC under the given conditions.

I believe you have proved that the equation above is true if $A+B+C=\pi$. But have you also proved that the equation is true only if $A+B+C=\pi$?
 
Hmm... I don't understand. Won't it suffice to show that the $sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=1$ is true if $A+B+C=\pi$ so that the prove is established?

Do you mean something like what will happen if $A+B+C=n\pi$?
 
anemone said:
Hmm... I don't understand. Won't it suffice to show that the $sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=1$ is true if $A+B+C=\pi$ so that the prove is established?

Do you mean something like what will happen if $A+B+C=n\pi$?

To complete the proof of the second half, we need to show that $\displaystyle \sin ^2X+\sin ^2Y+\sin^2Z+2\sin X\sin Y\sin Z=1\implies\displaystyle X+Y+Z=\frac{\pi}{2}$.

You said that you have proved $\displaystyle A+B+C=\pi\implies \sin^2\frac{A}{2}+\sin^2\frac{B}{2}+\sin^2\frac{C}{2}+2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}=1$.

However, what we now need is the converse: $\displaystyle\sin^2\frac{A}{2}+\sin^2\frac{B}{2}+\sin^2\frac{C}{2}+2\sin\frac{A}{2}\sin\frac{B}{2} \sin\frac{C}{2}=1\implies A+B+C=\pi$.
 
Last edited:
Alexmahone said:
...what we now need is the converse: $\displaystyle\sin^2\frac{A}{2}+\sin^2\frac{B}{2}+\sin^2\frac{C}{2}+2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}=1\implies A+B+C=\pi$.

Ah! You're right! Will think hard on that part and report back once I get the idea or workout the whole proof.
 
The last part of the proof:

Let $\displaystyle x=\sin\frac{A}{2},\ y=\sin\frac{B}{2},\ \sin\frac{C}{2}$.

$\displaystyle \sin^2\frac{A}{2}+\sin^2\frac{B}{2}+\sin^2\frac{C}{2}+2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}=1$

$\displaystyle \frac{1-\cos A}{2}+\frac{1-\cos B}{2}+\sin^2\frac{C}{2}+2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}=1$

$\displaystyle -\frac{\cos A}{2}-\frac{\cos B}{2}+\sin^2\frac{C}{2}+2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}=0$

$\displaystyle -\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)+\sin^2\frac{C}{2}+\left[\cos\left(\frac{A-B}{2}\right)-\cos\left(\frac{A+B}{2}\right)\right]\sin\frac{C}{2}=0$

$\displaystyle \left[\sin\frac{C}{2}+\cos\left(\frac{A-B}{2}\right)\right]\left[\sin\frac{C}{2}-\cos\left(\frac{A+B}{2}\right)\right]=0$

$\displaystyle \sin\frac{C}{2}+\cos\left(\frac{A-B}{2}\right)=0$ or $\displaystyle \sin\frac{C}{2}-\cos\left(\frac{A+B}{2}\right)=0$

$\displaystyle \frac{A-B}{2}=\frac{\pi}{2}+\frac{C}{2}$ or $\displaystyle \frac{A+B}{2}=\frac{\pi}{2}-\frac{C}{2}$

$\displaystyle A-B-C=\pi$ or $\displaystyle A+B+C=\pi$

If $\displaystyle A+B+C=\pi$, we are done.

If $\displaystyle A-B-C=\pi$, put $\displaystyle \frac{A'}{2}=\pi-\frac{A}{2}$ ie $\displaystyle A'=2\pi-A$. (Note that $\displaystyle \sin\frac{A'}{2}=\sin\frac{A}{2}$.)

$\displaystyle 2\pi-A'-B-C=\pi$

$\displaystyle A'+B+C=\pi$ and we are done.
 
Last edited:
Before I had time to response, you gave me the complete proof. :o

BTW, here is my initial work:
$sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}$

$=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}+sin\frac{C}{2}[(-)(cos\frac{A+B}{2}-cos\frac{A-B}{2})]$.

$=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}-sin\frac{C}{2}[sin\frac{C}{2}-cos\frac{A-B}{2}]$.

$=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}-sin^2\frac{C}{2}+sin\frac{C}{2}cos\frac{A-B}{2}$.

$=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}-(\frac{-1+cosC}{2})+\frac{1}{2}(sin\frac{A+C-B}{2}-sin\frac{A-(B+C)}{2})$.

$=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}-(\frac{-1+cosC}{2})+\frac{1}{2}(cosB+cosA)$.

=1

Now that I know I need to get down to the product of two factors that equals to zero because the relationship between A, B and C can clearly be drawn from there.

Thanks.
 

Similar threads

Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K