$$I=\displaystyle \int_{-\pi}^{\pi} \dfrac{\sin nx}{(1+2^x)\sin x}\,dx $$
Use the substitution $t = -x$
$$I = \displaystyle \int_{-\pi}^{\pi} \dfrac{2^t\sin nt}{(1+2^t)\sin t}\,dt = \int_{-\pi}^{\pi} \dfrac{2^x\sin nx}{(1+2^x)\sin x}\,dx $$
Since $t$ is just a dummy variable and by summing the two formulas
$$2I =\int_{-\pi}^{\pi} \dfrac{\sin nx}{\sin x}\,dx = \int_{0}^{2\pi} \dfrac{\sin nx}{\sin x}\,dx $$
Let us consider two different cases when $n$ is even
$$I_k = \int^{2\pi}_0\frac{\sin(2kx)}{\sin(x)}\,dx$$
$$I_k-I_{k-1} = \int^{2\pi}_0\frac{\sin(2kx)-\sin(2kx-2x)}{\sin(x)}\,dx$$
$$I_k-I_{k-1} =2 \int^{2\pi}_0\frac{\sin(x)\cos(2kx-x)}{\sin(x)}\,dx = \int^{2\pi}_0\cos(2kx-x)\,dx = 0$$
Hence
$$I_k=I_{k-1} = I_1 = 2\int^{2\pi}_0 \cos(x) \,dx= 0 $$
If $n$ is odd , let
$$I_j = \int^{2\pi}_0\frac{\sin((2j+1)x)}{\sin(x)}\,dx$$
$$I_j-I_{j-1} = \int^{2\pi}_0\frac{\sin((2j+1)x)-\sin((2j-1)x)}{\sin(x)}\,dx$$
$$I_j-I_{j-1} = \int^{2\pi}_0\frac{\sin(x)\cos(2jx)}{\sin(x)}\,dx = 0$$
Similarily
$$I_j = I_{j-1} = I_0 = \int^{2\pi}_0 \frac{\sin(x)}{\sin(x)} \,dx= 2\pi$$
Finally we get that
$$I= \int_{-\pi}^{\pi} \dfrac{\sin nx}{(1+2^x)\sin x}\,dx= \begin{cases}
0 & \text{n is even} \\
\pi & \text{n is odd}
\end{cases}$$