Can you factorize this trigonometric expression?

Click For Summary
SUMMARY

The trigonometric expression $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$ can be factorized effectively using trigonometric identities. Participants in the discussion, including kaliprasad and greg1313, confirmed the factorization process, indicating a collaborative effort in solving the problem. The expression can be simplified by recognizing patterns in the cosine functions and applying relevant identities.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with cosine function properties
  • Basic algebraic manipulation skills
  • Knowledge of factorization techniques in mathematics
NEXT STEPS
  • Study advanced trigonometric identities and their applications
  • Explore polynomial factorization methods in trigonometry
  • Learn about the sum-to-product identities in trigonometric expressions
  • Investigate the use of graphical methods to visualize trigonometric functions
USEFUL FOR

Mathematics students, educators, and anyone interested in deepening their understanding of trigonometric expressions and factorization techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factorize $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$.
 
Mathematics news on Phys.org
anemone said:
Factorize $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$.

$=\frac{1}{2}(2\cos^2 x+2\cos^2 2x+2\cos^2 3x+2\cos 2x +2\cos 4x + 2\cos 6x)$
$= \frac{1}{2}(\cos 2x + 1 + \cos 4x + 1 + \cos 6x + 1 + 2\cos 2x +2\cos 4x + 2\cos 6x)$
$=\frac{3}{2} (\cos 2x+ \cos 4x+ \cos 6x+ 1)$
$= \frac{3}{2}(\cos 2x+ \cos 6x+ \cos 4x+ 1)$
$=\frac{3}{2}(2 \cos 2 x \cos 4x + 2\cos^2 2x)$
$=3(\cos 2 x \cos 4x + \cos^2 2x)$
$=3\cos 2 x(\cos 4x + \cos 2x)$
$=3\cos 2x(2\cos 3x\cos\, x)$
$=6\cos\,x \cos 2x\cos 3x$
 
Thanks for participating, kaliprasad! I factored the sum the same way you did!(Cool)
 
anemone said:
Factorize $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$.

$$\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$$
$$=3\cos^2x+3\cos^22x+3\cos^23x-3$$
$$=3(\cos^2x+(2\cos^2x-1)\cos2x+(4\cos^3x-3\cos x)\cos3x-1)$$
$$=3(\cos^2x+2\cos^2x\cos2x-\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-1)$$
$$=3(\cos^2x+2\cos^2x\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-\cos2x-1)$$
$$=3(2\cos^2x\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-\cos^2x)$$
$$=3\cos x(2\cos x\cos2x+4\cos^2x\cos3x-3\cos3x-\cos x)$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(4\cos^2x-3))$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(2(1+\cos2x)-3))$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(2\cos2x-1))$$
$$=3\cos x(2\cos2x\cos3x+2\cos2x\cos x-\cos x-\cos3x)$$
$$=6\cos x\cos2x\cos3x$$
 
Last edited:
greg1313 said:
$$\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$$
$$=3\cos^2x+3\cos^22x+3\cos^23x-3$$
$$=3(\cos^2x+(2\cos^2x-1)\cos2x+(4\cos^3x-3\cos x)\cos3x-1)$$
$$=3(\cos^2x+2\cos^2x\cos2x-\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-1)$$
$$=3(\cos^2x+2\cos^2x\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-\cos2x-1)$$
$$=3(2\cos^2x\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-\cos^2x)$$
$$=3\cos x(2\cos x\cos2x+4\cos^2x\cos3x-3\cos3x-\cos x)$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(4\cos^2x-3))$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(2(1+\cos2x)-3))$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(2\cos2x-1))$$
$$=3\cos x(2\cos2x\cos3x+2\cos2x\cos x-\cos x-\cos3x)$$
$$=6\cos x\cos2x\cos3x$$

Well done, greg1313! And thanks for participating!(Cool)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K