Can you factorize this trigonometric expression?

Click For Summary

Discussion Overview

The discussion revolves around the factorization of the trigonometric expression $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$. Participants explore various methods to factor this expression, engaging in a collaborative effort to arrive at a solution.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Multiple participants attempt to factor the same trigonometric expression, indicating a shared interest in the problem.
  • Some participants express agreement with each other's approaches to factorization, suggesting a collaborative atmosphere.

Areas of Agreement / Disagreement

While there is some agreement among participants regarding their methods, the discussion does not resolve into a single consensus on the factorization itself.

Contextual Notes

The discussion lacks detailed steps or specific methodologies for the factorization, and the assumptions underlying the approaches are not fully articulated.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factorize $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$.
 
Mathematics news on Phys.org
anemone said:
Factorize $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$.

$=\frac{1}{2}(2\cos^2 x+2\cos^2 2x+2\cos^2 3x+2\cos 2x +2\cos 4x + 2\cos 6x)$
$= \frac{1}{2}(\cos 2x + 1 + \cos 4x + 1 + \cos 6x + 1 + 2\cos 2x +2\cos 4x + 2\cos 6x)$
$=\frac{3}{2} (\cos 2x+ \cos 4x+ \cos 6x+ 1)$
$= \frac{3}{2}(\cos 2x+ \cos 6x+ \cos 4x+ 1)$
$=\frac{3}{2}(2 \cos 2 x \cos 4x + 2\cos^2 2x)$
$=3(\cos 2 x \cos 4x + \cos^2 2x)$
$=3\cos 2 x(\cos 4x + \cos 2x)$
$=3\cos 2x(2\cos 3x\cos\, x)$
$=6\cos\,x \cos 2x\cos 3x$
 
Thanks for participating, kaliprasad! I factored the sum the same way you did!(Cool)
 
anemone said:
Factorize $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$.

$$\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$$
$$=3\cos^2x+3\cos^22x+3\cos^23x-3$$
$$=3(\cos^2x+(2\cos^2x-1)\cos2x+(4\cos^3x-3\cos x)\cos3x-1)$$
$$=3(\cos^2x+2\cos^2x\cos2x-\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-1)$$
$$=3(\cos^2x+2\cos^2x\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-\cos2x-1)$$
$$=3(2\cos^2x\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-\cos^2x)$$
$$=3\cos x(2\cos x\cos2x+4\cos^2x\cos3x-3\cos3x-\cos x)$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(4\cos^2x-3))$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(2(1+\cos2x)-3))$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(2\cos2x-1))$$
$$=3\cos x(2\cos2x\cos3x+2\cos2x\cos x-\cos x-\cos3x)$$
$$=6\cos x\cos2x\cos3x$$
 
Last edited:
greg1313 said:
$$\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$$
$$=3\cos^2x+3\cos^22x+3\cos^23x-3$$
$$=3(\cos^2x+(2\cos^2x-1)\cos2x+(4\cos^3x-3\cos x)\cos3x-1)$$
$$=3(\cos^2x+2\cos^2x\cos2x-\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-1)$$
$$=3(\cos^2x+2\cos^2x\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-\cos2x-1)$$
$$=3(2\cos^2x\cos2x+4\cos^3x\cos3x-3\cos x\cos3x-\cos^2x)$$
$$=3\cos x(2\cos x\cos2x+4\cos^2x\cos3x-3\cos3x-\cos x)$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(4\cos^2x-3))$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(2(1+\cos2x)-3))$$
$$=3\cos x(\cos x(2\cos2x-1)+\cos3x(2\cos2x-1))$$
$$=3\cos x(2\cos2x\cos3x+2\cos2x\cos x-\cos x-\cos3x)$$
$$=6\cos x\cos2x\cos3x$$

Well done, greg1313! And thanks for participating!(Cool)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K