MHB Can You Find a Counterexample for This Module Over a Commutative Ring?

  • Thread starter Thread starter Siron
  • Start date Start date
  • Tags Tags
    module Ring
Siron
Messages
148
Reaction score
0
Hi,

Let $A$ be a commutative ring, $M$ an $A-$module and $U,V,V'$ submodules of $M$ such that $U \cap V = U \cap V'$ and $U+V=U+V'$. Does it follow that $V=V'$?

The answer is no because the condition that $V \subset V'$ is necessary though I can't find a counterexample.

Does someone has a good counterexample for this wrong statement?

Thanks in advance!
Cheers,
Siron
 
Physics news on Phys.org
By $U+V$, do you mean $\{u+v\mid u\in U,v\in V\}$?
 
Evgeny.Makarov said:
By $U+V$, do you mean $\{u+v\mid u\in U,v\in V\}$?
Yes.
 
Then it's easy to get a counterexample by considering $\mathbb{R}^3$ as a module over $\mathbb{R}$.
 
Easy counter-example:

Let our parent $\Bbb R$-module be $\Bbb R^3$ as Evgeny suggests.

Take $U = \text{span}((0,1,0))$

$V = \text{span}((1,0,0))$

$V' = \text{span}((1,1,0))$.

It is clear that:

$U + V = U + V' = \Bbb R^2 \times \{0\}$ and:

$U \cap V = U \cap V' = \{(0,0,0)\}$

but $V \neq V'$.
 
Deveno said:
Easy counter-example:

Let our parent $\Bbb R$-module be $\Bbb R^3$ as Evgeny suggests.

Take $U = \text{span}((0,1,0))$

$V = \text{span}((1,0,0))$

$V' = \text{span}((1,1,0))$.

It is clear that:

$U + V = U + V' = \Bbb R^2 \times \{0\}$ and:

$U \cap V = U \cap V' = \{(0,0,0)\}$

but $V \neq V'$.

Thanks Deveno and Evgeny!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top