MHB Can You Find a Counterexample for This Module Over a Commutative Ring?

  • Thread starter Thread starter Siron
  • Start date Start date
  • Tags Tags
    module Ring
Siron
Messages
148
Reaction score
0
Hi,

Let $A$ be a commutative ring, $M$ an $A-$module and $U,V,V'$ submodules of $M$ such that $U \cap V = U \cap V'$ and $U+V=U+V'$. Does it follow that $V=V'$?

The answer is no because the condition that $V \subset V'$ is necessary though I can't find a counterexample.

Does someone has a good counterexample for this wrong statement?

Thanks in advance!
Cheers,
Siron
 
Physics news on Phys.org
By $U+V$, do you mean $\{u+v\mid u\in U,v\in V\}$?
 
Evgeny.Makarov said:
By $U+V$, do you mean $\{u+v\mid u\in U,v\in V\}$?
Yes.
 
Then it's easy to get a counterexample by considering $\mathbb{R}^3$ as a module over $\mathbb{R}$.
 
Easy counter-example:

Let our parent $\Bbb R$-module be $\Bbb R^3$ as Evgeny suggests.

Take $U = \text{span}((0,1,0))$

$V = \text{span}((1,0,0))$

$V' = \text{span}((1,1,0))$.

It is clear that:

$U + V = U + V' = \Bbb R^2 \times \{0\}$ and:

$U \cap V = U \cap V' = \{(0,0,0)\}$

but $V \neq V'$.
 
Deveno said:
Easy counter-example:

Let our parent $\Bbb R$-module be $\Bbb R^3$ as Evgeny suggests.

Take $U = \text{span}((0,1,0))$

$V = \text{span}((1,0,0))$

$V' = \text{span}((1,1,0))$.

It is clear that:

$U + V = U + V' = \Bbb R^2 \times \{0\}$ and:

$U \cap V = U \cap V' = \{(0,0,0)\}$

but $V \neq V'$.

Thanks Deveno and Evgeny!
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top