Can You Help Solve This Generalized Work Problem with an Illustrative Image?

AI Thread Summary
The discussion revolves around solving a generalized work problem using an illustrative image. The user successfully solved part (a) of the problem but expressed uncertainty about parts (b) and (c). The solution for (a) involves energy conservation principles, leading to a formula for velocity in terms of height and friction. Additional guidance was provided regarding the inclusion of spring energy in part (b). Ultimately, the user received the necessary help to arrive at the correct answer.
Ced
Messages
4
Reaction score
0
Homework Statement
A crate of mass(m) is above a ramp of angle theta and a distance(L) from a spring of constant k. The ramp and the crate have a coefficient of kinetic friction(μ)
a.) What is the crate's speed before it compresses the spring
b.) What is the maximum compression of the spring
c.) How far does the box get to its initial distance once it rebounds.
Relevant Equations
I think the relevant equations are
1. Ki + Ui + Wext = Kf + Uf
2. Elastic energy U=\frac{1}{2} k \Delta x^{2}
Here is an image for better illustration,
Capture.JPG


I only managed to solve for (a) but I'm not sure if I did it right. As for (b) and (c), I have no idea how to do it.

My answer for (a):
=> Ki + Ui + Wext = Kf + Uf
=> 0+mgh1-LμmgCosΘ = 1/2mv^2 + mgh2
=>1/2v^2 = gh1- gh2 - LμgCosΘ
=> V = √2g(h1 - h2 - LμCosΘ)
 
Physics news on Phys.org
You can express h1 - h2 in terms of L and theta. Part b will have a term for the spring energy at maximum compression on the final side.
 
Zexuo said:
You can express h1 - h2 in terms of L and theta. Part b will have a term for the spring energy at maximum compression on the final side.
Thank you so much! I got the answer now. You helped me a lot!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top