MHB Can You Integrate This Tricky Expression?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion focuses on the integration of the expression $\int \frac{t^3} {(2-t^2)^{5/2}} dt$. Participants suggest using substitution with $u = 2 - t^2$, leading to a transformed integral that simplifies the problem. The integration process involves breaking down the expression into manageable parts and applying the appropriate integration techniques. The final result is presented as $\frac{2}{3(2-t^2)^{3/2}} - \frac{1}{3(2-t^2)^{1/2}} + C$. The thread highlights the value of creative problem-solving in calculus beyond standard textbook methods.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int \frac{t^3} {(2-t^2)^{5/2} } dt$
Was going to expand
$$\frac{2t}{\left(2-{t}^{2} \right)^{5 /2 } }
-\frac{t}{\left(2-t^2 \right)^{3/2 } }$$
 
Last edited:
Physics news on Phys.org
karush said:
$\int \frac{t^3} {(2-t^2)^{5/2} } dt$
Was going to expand
$$\frac{2t}{\left(2-{t}^{2} \right)^{5 /2 } }
-\frac{t}{\left(2-t^2 \right)^{3/2 } }$$
Substitution: $t = \sqrt2\sin\theta$.
 
karush said:
$\int \frac{t^3} {(2-t^2)^{5/2} } dt$
Was going to expand
$$\frac{2t}{\left(2-{t}^{2} \right)^{5 /2 } }
-\frac{t}{\left(2-t^2 \right)^{3/2 } }$$

$\displaystyle \begin{align*} \int{ \frac{t^3}{ \left( 2 - t^2 \right) ^{\frac{5}{2}}}\,\mathrm{d}t} &= \frac{1}{2} \int{ t^2\, \left( 2 - t^2 \right) ^{-\frac{5}{2}}\,2t\,\mathrm{d}t } \end{align*}$

Substitute $\displaystyle \begin{align*} u = 2 - t^2 \implies \mathrm{d}u = 2t\,\mathrm{d}t \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{1}{2}\int{ t^2\,\left( 2 - t^2 \right) ^{-\frac{5}{2}}\,2t\,\mathrm{d}t} &= \frac{1}{2} \int{ \left( 2 - u \right) \, u^{-\frac{5}{2}}\,\mathrm{d}u} \\ &= \frac{1}{2} \int{ 2u^{-\frac{5}{2}} - u^{-\frac{3}{2}}\,\mathrm{d}u } \end{align*}$

Finish it.
 
Prove It said:
$\displaystyle \begin{align*} \int{ \frac{t^3}{ \left( 2 - t^2 \right) ^{\frac{5}{2}}}\,\mathrm{d}t} &= \frac{1}{2} \int{ t^2\, \left( 2 - t^2 \right) ^{-\frac{5}{2}}\,2t\,\mathrm{d}t } \end{align*}$

Substitute $\displaystyle \begin{align*} u = 2 - t^2 \implies \mathrm{d}u = 2t\,\mathrm{d}t \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{1}{2}\int{ t^2\,\left( 2 - t^2 \right) ^{-\frac{5}{2}}\,2t\,\mathrm{d}t} &= \frac{1}{2} \int{ \left( 2 - u \right) \, u^{-\frac{5}{2}}\,\mathrm{d}u} \\ &= \frac{1}{2} \int{ 2u^{-\frac{5}{2}} - u^{-\frac{3}{2}}\,\mathrm{d}u } \end{align*}$
That suggestion is much better than mine (but notice that $du = -2t\,dt$, with a minus sign).
 
$$\frac{1}{2}\left[\frac{4}{3 u^\left\{3/2\right\}}-\frac{2}{{u}^{1/2}}\right]+C$$

$$2-{t}^{2} = u$$

$$\frac{2}{3 \left(2-t^2 \right)^{3/2} }
-\frac{1}{3\left(2-{t}^{2}\right)^{1/2} } +C$$

I hope?
 
Last edited:
One thing I really like about MHB is the creative ways to solve problems that are not in textbook examples. :cool:
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K