Can You Integrate This Tricky Expression?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The integral $\int \frac{t^3} {(2-t^2)^{5/2}} dt$ can be effectively solved using the substitution $u = 2 - t^2$, which simplifies the integral to $\frac{1}{2} \int \left( 2 - u \right) u^{-\frac{5}{2}} \, du$. The final result is $\frac{2}{3 (2-t^2)^{3/2}} - \frac{1}{3(2-t^2)^{1/2}} + C$. This approach highlights the importance of strategic substitutions in integral calculus, particularly for complex expressions.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of trigonometric identities and functions
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study advanced integration techniques, including integration by parts and trigonometric substitution
  • Learn about improper integrals and their convergence
  • Explore the use of definite integrals in calculating areas under curves
  • Investigate the application of integrals in physics, particularly in mechanics and electromagnetism
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, as well as educators seeking innovative methods for teaching integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int \frac{t^3} {(2-t^2)^{5/2} } dt$
Was going to expand
$$\frac{2t}{\left(2-{t}^{2} \right)^{5 /2 } }
-\frac{t}{\left(2-t^2 \right)^{3/2 } }$$
 
Last edited:
Physics news on Phys.org
karush said:
$\int \frac{t^3} {(2-t^2)^{5/2} } dt$
Was going to expand
$$\frac{2t}{\left(2-{t}^{2} \right)^{5 /2 } }
-\frac{t}{\left(2-t^2 \right)^{3/2 } }$$
Substitution: $t = \sqrt2\sin\theta$.
 
karush said:
$\int \frac{t^3} {(2-t^2)^{5/2} } dt$
Was going to expand
$$\frac{2t}{\left(2-{t}^{2} \right)^{5 /2 } }
-\frac{t}{\left(2-t^2 \right)^{3/2 } }$$

$\displaystyle \begin{align*} \int{ \frac{t^3}{ \left( 2 - t^2 \right) ^{\frac{5}{2}}}\,\mathrm{d}t} &= \frac{1}{2} \int{ t^2\, \left( 2 - t^2 \right) ^{-\frac{5}{2}}\,2t\,\mathrm{d}t } \end{align*}$

Substitute $\displaystyle \begin{align*} u = 2 - t^2 \implies \mathrm{d}u = 2t\,\mathrm{d}t \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{1}{2}\int{ t^2\,\left( 2 - t^2 \right) ^{-\frac{5}{2}}\,2t\,\mathrm{d}t} &= \frac{1}{2} \int{ \left( 2 - u \right) \, u^{-\frac{5}{2}}\,\mathrm{d}u} \\ &= \frac{1}{2} \int{ 2u^{-\frac{5}{2}} - u^{-\frac{3}{2}}\,\mathrm{d}u } \end{align*}$

Finish it.
 
Prove It said:
$\displaystyle \begin{align*} \int{ \frac{t^3}{ \left( 2 - t^2 \right) ^{\frac{5}{2}}}\,\mathrm{d}t} &= \frac{1}{2} \int{ t^2\, \left( 2 - t^2 \right) ^{-\frac{5}{2}}\,2t\,\mathrm{d}t } \end{align*}$

Substitute $\displaystyle \begin{align*} u = 2 - t^2 \implies \mathrm{d}u = 2t\,\mathrm{d}t \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{1}{2}\int{ t^2\,\left( 2 - t^2 \right) ^{-\frac{5}{2}}\,2t\,\mathrm{d}t} &= \frac{1}{2} \int{ \left( 2 - u \right) \, u^{-\frac{5}{2}}\,\mathrm{d}u} \\ &= \frac{1}{2} \int{ 2u^{-\frac{5}{2}} - u^{-\frac{3}{2}}\,\mathrm{d}u } \end{align*}$
That suggestion is much better than mine (but notice that $du = -2t\,dt$, with a minus sign).
 
$$\frac{1}{2}\left[\frac{4}{3 u^\left\{3/2\right\}}-\frac{2}{{u}^{1/2}}\right]+C$$

$$2-{t}^{2} = u$$

$$\frac{2}{3 \left(2-t^2 \right)^{3/2} }
-\frac{1}{3\left(2-{t}^{2}\right)^{1/2} } +C$$

I hope?
 
Last edited:
One thing I really like about MHB is the creative ways to solve problems that are not in textbook examples. :cool:
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K