Can You Prove the GCD Inequality for Natural Numbers?

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Gcd Inequality
Click For Summary
SUMMARY

The discussion centers on proving the GCD inequality for natural numbers \(a\) and \(b\) where \(b > a\). The inequality states that \(\frac{ab}{(a,b)}+\frac{(a+1)(b+1)}{(a+1,b+1)}\geq \frac{2ab}{\sqrt{b-a}}\). Participants, including Albert, contributed various approaches to the proof, emphasizing the significance of the greatest common divisor in the context of this inequality. The consensus highlights the validity of the inequality across all natural numbers.

PREREQUISITES
  • Understanding of natural numbers and their properties
  • Familiarity with the concept of greatest common divisor (GCD)
  • Basic knowledge of inequalities in mathematics
  • Experience with mathematical proofs and problem-solving techniques
NEXT STEPS
  • Study the properties of the greatest common divisor in detail
  • Explore advanced inequality proofs in number theory
  • Learn about mathematical induction as a proof technique
  • Investigate applications of GCD in algorithm design and optimization
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in advanced mathematical proofs and inequalities will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that for all natural numbers, $a$ and $b$, with $b > a$:

\[\frac{ab}{(a,b)}+\frac{(a+1)(b+1)}{(a+1,b+1)}\geq \frac{2ab}{\sqrt{b-a}}\]

where $(m,n)$ denotes the greatest common divisor of the natural numbers $m$ and $n$.
 
Mathematics news on Phys.org
lfdahl said:
Prove, that for all natural numbers, $a$ and $b$, with $b > a$:

\[\frac{ab}{(a,b)}+\frac{(a+1)(b+1)}{(a+1,b+1)}\geq \frac{2ab}{\sqrt{b-a}}\]

where $(m,n)$ denotes the greatest common divisor of the natural numbers $m$ and $n$.
let $A=\dfrac{ab}{(a,b)}+\dfrac{(a+1)(b+1)}{(a+1,b+1)}$
$B=\dfrac{2ab}{\sqrt{b-a}}$
using $a\times b=(a,b)\times [a,b]$
where $(a,b)$ denotes the greatest common divisor of the natural numbers $a$ and $b$
and $[a,b]$ denotes the least common multiple of the natural numbers $a$ and $b$
we have $min(A)=b+b+1\leq A=[a,b]+[a+1,b+1]\leq ab+(a+1)(b+1)$
$=2ab+a+b+1=max(A)$
$B\leq 2ab=max(B)$
if we can find a solution $min(A)\geq max(B)$
that is to find solution $2b+1\geq 2ab$ then we have the proof
in this case $a=1,b>a$
in general we may set $b-a=k>0$
to find $\sqrt k(2b+1)\geq 2ab$
we get $\sqrt k=a,or \,\, k=a^2$
 
Last edited:
Albert said:
let $A=\dfrac{ab}{(a,b)}+\dfrac{(a+1)(b+1)}{(a+1,b+1)}$
$B=\dfrac{2ab}{\sqrt{b-a}}$
using $a\times b=(a,b)\times [a,b]$
where $(a,b)$ denotes the greatest common divisor of the natural numbers $a$ and $b$
and $[a,b]$ denotes the least common multiple of the natural numbers $a$ and $b$
we have $min(A)=b+b+1\leq A=[a,b]+[a+1,b+1]\leq ab+(a+1)(b+1)$
$=2ab+a+b+1=max(A)$
$B\leq 2ab=max(B)$
if we can find a solution $min(A)\geq max(B)$
that is to find solution $2b+1\geq 2ab$ then we have the proof
in this case $a=1,b>a$
in general we may set $b-a=k>0$
to find $\sqrt k(2b+1)\geq 2ab$
we get $\sqrt k=a,or \,\, k=a^2$

Thankyou, Albert for your approach to the problem. Well done.

Here´s another approach:

By applying the AM-GM inequality we get:
\[\frac{ab}{(a,b)}+\frac{(a+1)(b+1)}{(a+1,b+1)}\geq 2 \sqrt{\frac{a(a+1)b(b+1)}{(a,b)(a+1,b+1)}} > \frac{2ab}{\sqrt{(a,b)(a+1,b+1)}}\]
In order to complete the solution, we now show that:
\[b-a \ge (a,b)(a+1,b+1)\]
Indeed, $(a,b)$ and $(a+1,b+1)$ both divide $b-a$, since the greatest common divisor of two
numbers also divides their difference. On the other hand, $(a,b)$ and $(a+1,b+1)$ are coprimes.
Therefore the product $(a,b)(a+1,b+1)$ divides $b-a$. Hence the inequality is proved.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K