Can you prove the trigonometry challenge with angles of a triangle?

Click For Summary
SUMMARY

The discussion centers on proving the inequality involving the angles of a triangle: $\dfrac{1}{\sin A}+\dfrac{1}{\sin B}\ge \dfrac{8}{3+2\cos C}$. The proof establishes that equality holds when $C=\dfrac{2\pi}{3}$ and $A=B=\dfrac{\pi}{6}$. Albert's contribution was crucial in identifying and correcting a mistake in the initial proof, ensuring the accuracy of the conclusion.

PREREQUISITES
  • Understanding of trigonometric functions, specifically sine and cosine.
  • Familiarity with triangle angle properties and inequalities.
  • Knowledge of mathematical proof techniques.
  • Basic understanding of radians and their application in trigonometry.
NEXT STEPS
  • Study the properties of triangle angles and their relationships.
  • Learn about the Law of Sines and its applications in triangle geometry.
  • Explore advanced trigonometric inequalities and their proofs.
  • Investigate the implications of equality conditions in trigonometric inequalities.
USEFUL FOR

Mathematicians, students studying geometry and trigonometry, and educators looking to enhance their understanding of triangle properties and inequalities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that if $A,\,B$ and $C$ are angles of a triangle, then $\dfrac{1}{\sin A}+\dfrac{1}{\sin B}\ge \dfrac{8}{3+2\cos C}$.
 
Mathematics news on Phys.org
Solution of other:

Since $\dfrac{1}{\sin x}$ is convex for $0\le x\le \pi$, we have

$\dfrac{1}{\sin A}+\dfrac{1}{\sin B}\ge \dfrac{2}{\sin \dfrac{A+B}{2}}=\dfrac{2}{\cos \dfrac{C}{2}}$

The problem will be done once we establish

$\dfrac{2}{\cos \dfrac{C}{2}}\ge \dfrac{8}{3+2\cos C}$$\dfrac{2}{\cos \dfrac{C}{2}}\ge \dfrac{8}{3+2\left(2\left(\cos \dfrac{C}{2}\right)^2-1\right)}$

$\dfrac{2}{\cos \dfrac{C}{2}}\ge \dfrac{8}{4\left(\cos \dfrac{C}{2}\right)^2+1}$

$2\left(4\left(\cos \dfrac{C}{2}\right)^2+1\right)\ge 8\cos \dfrac{C}{2}$

$\left(2\cos \dfrac{C}{2}-1\right)^2\ge 0$

There is equality iff $C=\dfrac{2\pi}{3},\,A=B=\dfrac{\pi}{6}$.
 
Last edited:
anemone said:
Solution of other:

Since $\dfrac{1}{\sin x}$ is convex for $0\le x\le \pi$, we have

$\dfrac{1}{\sin A}+\dfrac{1}{\sin B}\ge \dfrac{2}{\sin \dfrac{A+B}{2}}=\dfrac{2}{\cos \dfrac{C}{2}}$

The problem will be done once we establish

$\dfrac{2}{\cos \dfrac{C}{2}}\ge \dfrac{8}{3+2\cos C}$$\dfrac{2}{\cos \dfrac{C}{2}}\ge \dfrac{8}{3+2\left(2\left(\cos \dfrac{C}{2}\right)^2-1\right)}$

$\dfrac{2}{\cos \dfrac{C}{2}}\ge \dfrac{8}{4\left(\cos \dfrac{C}{2}\right)^2+1}$

$2\left(4\left(\cos \dfrac{C}{2}\right)^2+1\right)\ge 8\cos \dfrac{C}{2}$

$\left(2\cos \dfrac{C}{2}-1\right)^2\ge 0$

There is equality iff $C=\dfrac{2\pi}{3},\,A=B=\dfrac{\pi}{3}$.
It should be :There is equality iff $C=\dfrac{2\pi}{3},\,A=B=\dfrac{\pi}{6}$.
 
Thanks, Albert for catching it...

I've hence fixed the mistake.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K