MHB Can You Prove These Properties of Normal Subgroups in Group Theory?

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Normal
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I am struck on a problem dealing with normal subgroups.

The problem is the following:

Let $G$ be a group, $H$ and $K$ be normal subgroups of $G$ with $H\ge K$.
  1. Prove that $H$ is a normal subgroup of $K$
  2. Prove that $K/H$ is a normal subgroup of $G/H$.
My attempted work:

Proof: We know that $H,K\ge G$.

Thanks
Carter B
 
Physics news on Phys.org
Cbarker1 said:
The problem is the following:

Let $G$ be a group, $H$ and $K$ be normal subgroups of $G$ with $H\ge K$.
  1. Prove that $H$ is a normal subgroup of $K$
  2. Prove that $K/H$ is a normal subgroup of $G/H$.
It looks as though $H\ge K$ should be $H\le K$. The rest of the question certainly implies that $H$ is contained in $K$.

Start by writing down the definition of a normal subgroup. Use that definition to say what it means for $H$ to be a normal subgroup of $G$. You should be able to deduce the result 1. from that.

For 2., again start by writing down some definitions. How is a quotient group defined? Then what conditions does $K/H$ have to satisfy in order to be a normal subgroup of $G/H$?
 
Cbarker1 said:
Dear Everyone,

I am struck on a problem dealing with normal subgroups.

The problem is the following:

Let $G$ be a group, $H$ and $K$ be normal subgroups of $G$ with $H{\color{red}\le} K$.
  1. Prove that $H$ is a normal subgroup of $K$
  2. Prove that $K/H$ is a normal subgroup of $G/H$.
My attempted work:

Proof: We know that $H,K{\color{red}\le} G$.

Thanks
Carter B

Hi Carter.

Note the corrections in red.

1. To show that $H$ is a normal subgroup of $K$, you need to snow that $kHk^{-1}=H$ for all $k\in K$. But $H$ is a normal subgroup of $G$, i.e. $gHg^{-1}=H$ for all $g\in G$. Can you complete the proof?2. $K/H$ is the set of all cosets of $H$ in $K$, i.e. cosets of the form $kH$ for $k\in K$. An element of $G/H$ is a coset of the form $gH$ where $g\in G$. To show that $K/H$ is a normal subgroup of $G/H$, you need to show that
$$\left(gH\right)\left(kH\right)\left(gH\right)^{-1}$$
is in $K/H$. The above is equal to
$$\left(gkg^{-1}\right)H.$$
As $K$ is normal in $G$, what can you say about $gkg^{-1}$?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top