MHB Can You Prove This Triangle Inequality Without A Hint?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion centers on proving the triangle inequality expressed as (a+1)(y²a + z²) > x²a for any real number a, given that x, y, and z are the lengths of the sides of a triangle. Participants express varying levels of difficulty in solving the inequality, with some stating they could not arrive at a solution without hints. The conversation emphasizes the importance of understanding the properties of triangle sides in relation to the inequality. The challenge lies in demonstrating the inequality holds true under all conditions defined by the triangle's properties. Overall, the thread highlights the complexity of the problem and the necessity of guidance in tackling it.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y$ and $z$ be the lengths of the sides of a triangle. Show that for every real number $a$, the following inequality always holds.

$(a+1)(y^2a+z^2)>x^2a$
 
Mathematics news on Phys.org
Subtle Hint:
Quadratic function property.
 
anemone said:
Let $x,\,y$ and $z$ be the lengths of the sides of a triangle. Show that for every real number $a$, the following inequality always holds.

$(a+1)(y^2a+z^2)>x^2a$

I could not have solved without the hint

$(a+1)(y^2a+z^2) - x^2a$

= $y^2a^2+a(y^2+z^2-x^2)-z^2$

this is quadratic in a and discriminant is

$(y^2+z^2-x^2)^2 - 4y^2z^2= (y^2+z^2-x^2) - (2yz)^2$

= $(y^2+z^2 + 2yz-x^2)(y^2+z^2-2yz-x^2)$

= $((y+z)^2-x^2)((y-z)^2 - x^2)$

= $(y+z+x)(y+z-x)(y-z+x)(y-z-x)$

= $-(x+y+z)(y+z-x)(x+y-z)(z+x-y)$

the above is -ve of product of 4 positive terms so -ve

so the value

$(a+1)(y^2a+z^2) - x^2a$ does not have a solution for a so is always > 0 or < 0

I choose one set of value

a = x=y=z =1 to see $(a+1)(y^2a+z^2) - x^2a= 3>0$

so $(a+1)(y^2a+z^2) - x^2a>0$

or

$(a+1)(y^2a+z^2) > x^2a$
 
kaliprasad said:
I could not have solved without the hint

$(a+1)(y^2a+z^2) - x^2a$

= $y^2a^2+a(y^2+z^2-x^2)-z^2$

this is quadratic in a and discriminant is

$(y^2+z^2-x^2)^2 - 4y^2z^2= (y^2+z^2-x^2) - (2yz)^2$

= $(y^2+z^2 + 2yz-x^2)(y^2+z^2-2yz-x^2)$

= $((y+z)^2-x^2)((y-z)^2 - x^2)$

= $(y+z+x)(y+z-x)(y-z+x)(y-z-x)$

= $-(x+y+z)(y+z-x)(x+y-z)(z+x-y)$

the above is -ve of product of 4 positive terms so -ve

so the value

$(a+1)(y^2a+z^2) - x^2a$ does not have a solution for a so is always > 0 or < 0

I choose one set of value

a = x=y=z =1 to see $(a+1)(y^2a+z^2) - x^2a= 3>0$

so $(a+1)(y^2a+z^2) - x^2a>0$

or

$(a+1)(y^2a+z^2) > x^2a$

Thank you kaliprasad for participating!

I saw this very old IMO problem without a solution but after contemplating it for a moment the solution came to me and I thought I must share it at MHB...:D
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
990
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
25K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K