MHB Can You Prove This Triangle Inequality Without A Hint?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion centers on proving the triangle inequality expressed as (a+1)(y²a + z²) > x²a for any real number a, given that x, y, and z are the lengths of the sides of a triangle. Participants express varying levels of difficulty in solving the inequality, with some stating they could not arrive at a solution without hints. The conversation emphasizes the importance of understanding the properties of triangle sides in relation to the inequality. The challenge lies in demonstrating the inequality holds true under all conditions defined by the triangle's properties. Overall, the thread highlights the complexity of the problem and the necessity of guidance in tackling it.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y$ and $z$ be the lengths of the sides of a triangle. Show that for every real number $a$, the following inequality always holds.

$(a+1)(y^2a+z^2)>x^2a$
 
Mathematics news on Phys.org
Subtle Hint:
Quadratic function property.
 
anemone said:
Let $x,\,y$ and $z$ be the lengths of the sides of a triangle. Show that for every real number $a$, the following inequality always holds.

$(a+1)(y^2a+z^2)>x^2a$

I could not have solved without the hint

$(a+1)(y^2a+z^2) - x^2a$

= $y^2a^2+a(y^2+z^2-x^2)-z^2$

this is quadratic in a and discriminant is

$(y^2+z^2-x^2)^2 - 4y^2z^2= (y^2+z^2-x^2) - (2yz)^2$

= $(y^2+z^2 + 2yz-x^2)(y^2+z^2-2yz-x^2)$

= $((y+z)^2-x^2)((y-z)^2 - x^2)$

= $(y+z+x)(y+z-x)(y-z+x)(y-z-x)$

= $-(x+y+z)(y+z-x)(x+y-z)(z+x-y)$

the above is -ve of product of 4 positive terms so -ve

so the value

$(a+1)(y^2a+z^2) - x^2a$ does not have a solution for a so is always > 0 or < 0

I choose one set of value

a = x=y=z =1 to see $(a+1)(y^2a+z^2) - x^2a= 3>0$

so $(a+1)(y^2a+z^2) - x^2a>0$

or

$(a+1)(y^2a+z^2) > x^2a$
 
kaliprasad said:
I could not have solved without the hint

$(a+1)(y^2a+z^2) - x^2a$

= $y^2a^2+a(y^2+z^2-x^2)-z^2$

this is quadratic in a and discriminant is

$(y^2+z^2-x^2)^2 - 4y^2z^2= (y^2+z^2-x^2) - (2yz)^2$

= $(y^2+z^2 + 2yz-x^2)(y^2+z^2-2yz-x^2)$

= $((y+z)^2-x^2)((y-z)^2 - x^2)$

= $(y+z+x)(y+z-x)(y-z+x)(y-z-x)$

= $-(x+y+z)(y+z-x)(x+y-z)(z+x-y)$

the above is -ve of product of 4 positive terms so -ve

so the value

$(a+1)(y^2a+z^2) - x^2a$ does not have a solution for a so is always > 0 or < 0

I choose one set of value

a = x=y=z =1 to see $(a+1)(y^2a+z^2) - x^2a= 3>0$

so $(a+1)(y^2a+z^2) - x^2a>0$

or

$(a+1)(y^2a+z^2) > x^2a$

Thank you kaliprasad for participating!

I saw this very old IMO problem without a solution but after contemplating it for a moment the solution came to me and I thought I must share it at MHB...:D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
1K
Replies
1
Views
959
Replies
2
Views
1K
Replies
15
Views
2K
Replies
13
Views
3K
Replies
59
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Back
Top