Can You Prove This Triangle Inequality Without A Hint?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the triangle inequality expressed as \((a+1)(y^2a+z^2)>x^2a\) for any real number \(a\) and triangle side lengths \(x\), \(y\), and \(z\). Participants emphasize the necessity of a hint to approach the proof, indicating the complexity of the problem. The inequality is established as a fundamental property of triangles, reinforcing the importance of understanding geometric relationships in mathematical proofs.

PREREQUISITES
  • Understanding of triangle properties and inequalities
  • Familiarity with algebraic manipulation of inequalities
  • Knowledge of real numbers and their properties
  • Basic proof techniques in mathematics
NEXT STEPS
  • Study the proof of the triangle inequality in Euclidean geometry
  • Explore algebraic techniques for manipulating inequalities
  • Investigate the implications of the triangle inequality in various mathematical contexts
  • Learn about geometric interpretations of inequalities in triangle properties
USEFUL FOR

Mathematics students, educators, and anyone interested in geometric proofs and inequalities will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y$ and $z$ be the lengths of the sides of a triangle. Show that for every real number $a$, the following inequality always holds.

$(a+1)(y^2a+z^2)>x^2a$
 
Mathematics news on Phys.org
Subtle Hint:
Quadratic function property.
 
anemone said:
Let $x,\,y$ and $z$ be the lengths of the sides of a triangle. Show that for every real number $a$, the following inequality always holds.

$(a+1)(y^2a+z^2)>x^2a$

I could not have solved without the hint

$(a+1)(y^2a+z^2) - x^2a$

= $y^2a^2+a(y^2+z^2-x^2)-z^2$

this is quadratic in a and discriminant is

$(y^2+z^2-x^2)^2 - 4y^2z^2= (y^2+z^2-x^2) - (2yz)^2$

= $(y^2+z^2 + 2yz-x^2)(y^2+z^2-2yz-x^2)$

= $((y+z)^2-x^2)((y-z)^2 - x^2)$

= $(y+z+x)(y+z-x)(y-z+x)(y-z-x)$

= $-(x+y+z)(y+z-x)(x+y-z)(z+x-y)$

the above is -ve of product of 4 positive terms so -ve

so the value

$(a+1)(y^2a+z^2) - x^2a$ does not have a solution for a so is always > 0 or < 0

I choose one set of value

a = x=y=z =1 to see $(a+1)(y^2a+z^2) - x^2a= 3>0$

so $(a+1)(y^2a+z^2) - x^2a>0$

or

$(a+1)(y^2a+z^2) > x^2a$
 
kaliprasad said:
I could not have solved without the hint

$(a+1)(y^2a+z^2) - x^2a$

= $y^2a^2+a(y^2+z^2-x^2)-z^2$

this is quadratic in a and discriminant is

$(y^2+z^2-x^2)^2 - 4y^2z^2= (y^2+z^2-x^2) - (2yz)^2$

= $(y^2+z^2 + 2yz-x^2)(y^2+z^2-2yz-x^2)$

= $((y+z)^2-x^2)((y-z)^2 - x^2)$

= $(y+z+x)(y+z-x)(y-z+x)(y-z-x)$

= $-(x+y+z)(y+z-x)(x+y-z)(z+x-y)$

the above is -ve of product of 4 positive terms so -ve

so the value

$(a+1)(y^2a+z^2) - x^2a$ does not have a solution for a so is always > 0 or < 0

I choose one set of value

a = x=y=z =1 to see $(a+1)(y^2a+z^2) - x^2a= 3>0$

so $(a+1)(y^2a+z^2) - x^2a>0$

or

$(a+1)(y^2a+z^2) > x^2a$

Thank you kaliprasad for participating!

I saw this very old IMO problem without a solution but after contemplating it for a moment the solution came to me and I thought I must share it at MHB...:D
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
82K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K