Can You Simplify the Second Derivative Test Explanation?

Click For Summary

Discussion Overview

The discussion revolves around the second derivative test in calculus, specifically examining its conditions and implications for identifying local minima. Participants seek to clarify the requirements of the test and explore examples that illustrate scenarios where the conditions may or may not lead to local minima.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants clarify the correct formulation of the second derivative test, noting that it should state "If $f'(c)=0$ and $f''(c)>0$, then $c$ is a local minimum for $f$."
  • Participants are tasked with providing examples of functions where $f'(c)=0$ but $f''(c) \le 0$, and $c$ is not a local minimum.
  • One participant suggests the function $f(x) = -x^2$ as an example where $c=0$ is a maximum, thus illustrating that $c$ need not be a local minimum when $f''(c) \le 0$.
  • Another participant proposes that a constant function $f=c$ could serve as an example where $c$ is a local minimum even if $f''(c)=0$.
  • There is a request for further examples to satisfy the conditions outlined in the problem, indicating uncertainty about finding suitable functions.

Areas of Agreement / Disagreement

Participants express uncertainty and seek clarification on the examples needed to illustrate the conditions of the second derivative test. There is no consensus on specific examples, and multiple viewpoints on the implications of the test are presented.

Contextual Notes

Participants are navigating the nuances of the second derivative test, including the implications of removing the condition $f''(c) > 0$. The discussion reflects varying levels of understanding and the need for precise examples to illustrate the mathematical concepts involved.

Petrus
Messages
702
Reaction score
0
This is a problem from My book which I have hard understanding what they are asking for, I am pretty confused on the question would like to have help!

Second derivate test works as follows:
If f (c) = 0 and f'' (c)> 0 Then c is a local min point for function f (a) Show that c need not be a local minimum of f if one removes the requirement "f'' (c)> 0
(but retains the other requirements), by giving an example of such a function.
(B) Show that c may be a local minimum even if you take away the requirement "f'' (c)> 0 (but retains the other requirements), by giving an example of such a function.
(Because the derivative in an extreme point according to Fermat's statement above is always zero if it is defined there is no point to look at what happens if you take away the requirement "f '(c) = 0.")
regards,
$$|\pi\rangle$$
 
Physics news on Phys.org
Petrus said:
This is a problem from My book which I have hard understanding what they are asking for, I am pretty confused on the question would like to have help!

Second derivate test works as follows:
If $f (c) = 0$ and $f'' (c)> 0$ Then $c$ is a local min point for function $f$

I think you meant "If $f'(c)=0$ and $f''(c)>0$, then $c$ is a local min for $f$. The actual value of the function is irrelevant.

(a) Show that $c$ need not be a local minimum of $f$ if one removes the requirement $f'' (c)> 0$.
(but retains the other requirements), by giving an example of such a function.

Can you think of a function where $f'(c)=0$ but $f''(c) \le 0$, and $c$ is not a local min?

(B) Show that $c$ may be a local minimum even if you take away the requirement $f'' (c)> 0$ (but retains the other requirements), by giving an example of such a function.
(Because the derivative in an extreme point according to Fermat's statement above is always zero if it is defined there is no point to look at what happens if you take away the requirement $f '(c) = 0.$)

regards,
$$|\pi\rangle$$

So here, here you need a function where $f'(c)=0$, and $f''(c) \le 0$, and $c$ is a local min. Can you think of one?
 
Ackbach said:
I think you meant "If $f'(c)=0$ and $f''(c)>0$, then $c$ is a local min for $f$. The actual value of the function is irrelevant.
Can you think of a function where $f'(c)=0$ but $f''(c) \le 0$, and $c$ is not a local min?
So here, here you need a function where $f'(c)=0$, and $f''(c) \le 0$, and $c$ is a local min. Can you think of one?
(a) $$f(x)-x^2$$
(b) I got no clue of that one
 
Petrus said:
This is a problem from My book which I have hard understanding what they are asking for, I am pretty confused on the question would like to have help!

Second derivate test works as follows:
If f (c) = 0 and f'' (c)> 0 Then c is a local min point for function f (a) Show that c need not be a local minimum of f if one removes the requirement "f'' (c)> 0
(but retains the other requirements), by giving an example of such a function.
(B) Show that c may be a local minimum even if you take away the requirement "f'' (c)> 0 (but retains the other requirements), by giving an example of such a function.
(Because the derivative in an extreme point according to Fermat's statement above is always zero if it is defined there is no point to look at what happens if you take away the requirement "f '(c) = 0.")
regards,
$$|\pi\rangle$$

Try and think what the graphs would look like in each case. For the first, think of a function with a maximum but no minmum. For example $f(x)=-x^2$ and $c=0$. For B), what you are showing is that this condition is sufficient, but not neccesary. As I understand it, we still want $f'(c)=0.$ What about the constant function $f=c$. Then $f'=f''=0$ but $c$ is still a minumum
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K