MHB Can You Solve the Harmonic Function Challenge?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
The discussion presents a problem of the week (POTW) involving the harmonic function challenge defined on the open unit disc in the complex plane. Participants are tasked with proving that the function F, defined using the Poisson kernel, is harmonic on the unit disc and that it converges to the boundary function f as z approaches any point on the boundary. The importance of the Poisson kernel as an approximate identity is emphasized for solving the problem. Despite the challenge, no participants have submitted solutions yet, and the thread encourages further attempts before the deadline. The solution is available for review by those interested.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $\Bbb D$ be the open unit disc in the complex plane, and let $f$ be a continuous complex function on $\partial\Bbb D$. Consider the function

$$F(re^{i\phi}) \,\dot{=}\, \frac1{2\pi}\int_0^{2\pi} f(e^{i\theta})\frac{1-r^2}{1-2r\cos(\theta-\phi) + r^2}\, d\theta\quad (re^{i\phi}\in \Bbb D)$$

Prove $F$ is harmonic on $\Bbb D$, and that for all $z_0\in \partial \Bbb D$, $\lim\limits_{z\to z_0} F(z) = f(z_0)$.
-----Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
I'll give one more week for users to attempt a solution. Keep in mind, the definition of $F$ involves the Poisson kernel. It's key to use the fact that the Poisson kernel is an approximate identity.
 
No one answered this week's problem. You can read my solution below.
Note that $F(z)$ is the real part of the holomorphic function $$\frac{1}{2\pi}\int_{0}^{2\pi} f(e^{i\theta})\frac{e^{i\theta}-z}{e^{i\theta} + z}\, d\theta$$ whence $F$ is harmonic. Now fix $z_0 = e^{i\phi_0}\in \partial \Bbb D$. By continuity of $u$, given $\epsilon > 0$ there corresponds an $\eta > 0$ such that for all $\theta$, $\lvert \theta - \phi_0\rvert < \eta$ implies $\lvert f(e^{i\theta}) - f(e^{i\phi_0})\rvert < 0.5\epsilon$. Fix $\phi$ such that $\lvert \phi - \phi_0\rvert < 0.25\eta$, and note

$$F(re^{i\phi}) - f(re^{i\phi_0}) = \frac{1}{2\pi} \int_{-\pi}^\pi [f(re^{i\theta}) - f(re^{i\phi_0})]P_r(\phi-\theta)\, d\theta$$ where $P_r$ is the Poisson kernel. Break up the latter integral as $J_1 + J_2$, where $J_1, J_2$ are integrals over regions $\lvert \theta - \phi_0\rvert < \eta$ and $\lvert \theta - \phi_0\rvert \ge \eta$, respectively. Then $\lvert J_1 \rvert< 0.5\epsilon$ and $\lvert J_2 \rvert < 2\max_{\lvert \phi - \theta\rvert \ge 0.75\eta} P_r(\phi - \theta) \cdot \max_{-\pi \le \theta \le \pi} \lvert u(re^{i\theta})\rvert$. Since, $\lim_{r\to 1} \max_{\lvert \phi - \theta\rvert \ge 0.75\eta} P_r(\phi - \theta) = 0$, then $|J_2| < 0.5 \epsilon$ for all $r$ sufficiently close to $1$. Hence, $\lvert F(re^{i\phi}) - F(re^{i\phi_0})\rvert < 0.5 \epsilon + 0.5 \epsilon = \epsilon$ whenever $\lvert \phi - \phi_0\rvert < 0.25\eta$ and $r$ is sufficiently close to $1$. Consequently, $\lim_{z \to z_0} F(z) = f(z_0)$.