Can You Solve the Olympiad Inequality Challenge with Positive Real Numbers?

Click For Summary
SUMMARY

The forum discussion centers on proving the inequality $$\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}\ge 2$$ for positive real numbers $a$, $b$, and $c$. Participants praised the innovative approach taken by user Euge in solving the challenge. The discussion emphasizes the importance of creative problem-solving in mathematical inequalities.

PREREQUISITES
  • Understanding of algebraic inequalities
  • Familiarity with symmetric sums
  • Knowledge of AM-GM inequality
  • Experience with positive real number properties
NEXT STEPS
  • Study the AM-GM inequality and its applications in proofs
  • Explore symmetric sums and their significance in inequalities
  • Research advanced techniques in inequality proofs
  • Practice solving Olympiad-level mathematical problems
USEFUL FOR

Mathematics enthusiasts, competitive mathematicians, and students preparing for Olympiad challenges will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $a,\,b$ and $c$ are positive real numbers.

Prove that $$\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}\ge 2$$.
 
Mathematics news on Phys.org
Hint:

Focus could be put on minimizing $(a+b)(b+c)(c+a)$...
 
Here is my solution.

By the power mean inequality,

$$a^3 + b^3 + c^3 = \frac{a^3 + b^3}{2} + \frac{b^3 + c^3}{2} + \frac{c^3 + a^3}{2} \ge \left(\frac{a + b}{2}\right)^3 + \left(\frac{b + c}{2}\right)^3 + \left(\frac{c + a}{2}\right)^3$$
$$= \frac{(a + b)^3 + (b + c)^3 + (c + a)^3}{8} \ge \frac{3(a + b)(b + c)(c + a)}{8}$$

with equality if and only if $a = b = c$. So

$$\frac{a^3 + b^3 + c^3}{3abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge \frac{(a + b)(b + c)(c + a)}{8abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge 2$$

using the inequality $x + \frac{1}{x} \ge 2$ with $x = (a + b)(b + c)(c + a)/(8abc)$.
 
Euge said:
Here is my solution.

By the power mean inequality,

$$a^3 + b^3 + c^3 = \frac{a^3 + b^3}{2} + \frac{b^3 + c^3}{2} + \frac{c^3 + a^3}{2} \ge \left(\frac{a + b}{2}\right)^3 + \left(\frac{b + c}{2}\right)^3 + \left(\frac{c + a}{2}\right)^3$$
$$= \frac{(a + b)^3 + (b + c)^3 + (c + a)^3}{8} \ge \frac{3(a + b)(b + c)(c + a)}{8}$$

with equality if and only if $a = b = c$. So

$$\frac{a^3 + b^3 + c^3}{3abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge \frac{(a + b)(b + c)(c + a)}{8abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge 2$$

using the inequality $x + \frac{1}{x} \ge 2$ with $x = (a + b)(b + c)(c + a)/(8abc)$.
very innovative!
 
Very well done, Euge!(Cool) And thanks for participating!

My solution:

First note that if we want to minimize the LHS of the target expression, we have to maximize the denominator for $$\frac{8abc}{(a+b)(b+c)(c+a)}$$.

And $$(a+b)(b+c)(c+a)=2abc+a^2b+b^2c+c^2a+a^2c+b^2a+c^2b$$, we have

$$abc\le \frac{a^3+b^3+c^3}{3}$$ by the AM-GM inequality, and both

$$a^2b+b^2c+c^2a\le a^3+b^3+c^3$$, $$a^2c+b^2a+c^2\le a^3+b^3+c^3$$ by the Rearrangement Inequality, thus

$$\begin{align*}\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}&= \frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{2abc+a^2b+b^2c+c^2a+a^2c+b^2a+c^2b}\\&\ge \frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{2\left(\frac{a^3+b^3+c^3}{3}\right)+2(a^3+b^3+c^3)}\\&=\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{\frac{8(a^3+b^3+c^3)}{3}}\\&=\frac{a^3+b^3+c^3}{3abc}+\frac{3abc}{a^3+b^3+c^3}\\&\ge 2\sqrt{\left(\frac{a^3+b^3+c^3}{3abc}\right)\left(\frac{3abc}{a^3+b^3+c^3}\right)}\text{by the AM-GM inequality}\\&=2\end{align*}$$
 
Albert said:
very innovative!

Thank you!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
921
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K