MHB Can You Solve the Olympiad Inequality Challenge with Positive Real Numbers?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $a,\,b$ and $c$ are positive real numbers.

Prove that $$\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}\ge 2$$.
 
Mathematics news on Phys.org
Hint:

Focus could be put on minimizing $(a+b)(b+c)(c+a)$...
 
Here is my solution.

By the power mean inequality,

$$a^3 + b^3 + c^3 = \frac{a^3 + b^3}{2} + \frac{b^3 + c^3}{2} + \frac{c^3 + a^3}{2} \ge \left(\frac{a + b}{2}\right)^3 + \left(\frac{b + c}{2}\right)^3 + \left(\frac{c + a}{2}\right)^3$$
$$= \frac{(a + b)^3 + (b + c)^3 + (c + a)^3}{8} \ge \frac{3(a + b)(b + c)(c + a)}{8}$$

with equality if and only if $a = b = c$. So

$$\frac{a^3 + b^3 + c^3}{3abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge \frac{(a + b)(b + c)(c + a)}{8abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge 2$$

using the inequality $x + \frac{1}{x} \ge 2$ with $x = (a + b)(b + c)(c + a)/(8abc)$.
 
Euge said:
Here is my solution.

By the power mean inequality,

$$a^3 + b^3 + c^3 = \frac{a^3 + b^3}{2} + \frac{b^3 + c^3}{2} + \frac{c^3 + a^3}{2} \ge \left(\frac{a + b}{2}\right)^3 + \left(\frac{b + c}{2}\right)^3 + \left(\frac{c + a}{2}\right)^3$$
$$= \frac{(a + b)^3 + (b + c)^3 + (c + a)^3}{8} \ge \frac{3(a + b)(b + c)(c + a)}{8}$$

with equality if and only if $a = b = c$. So

$$\frac{a^3 + b^3 + c^3}{3abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge \frac{(a + b)(b + c)(c + a)}{8abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge 2$$

using the inequality $x + \frac{1}{x} \ge 2$ with $x = (a + b)(b + c)(c + a)/(8abc)$.
very innovative!
 
Very well done, Euge!(Cool) And thanks for participating!

My solution:

First note that if we want to minimize the LHS of the target expression, we have to maximize the denominator for $$\frac{8abc}{(a+b)(b+c)(c+a)}$$.

And $$(a+b)(b+c)(c+a)=2abc+a^2b+b^2c+c^2a+a^2c+b^2a+c^2b$$, we have

$$abc\le \frac{a^3+b^3+c^3}{3}$$ by the AM-GM inequality, and both

$$a^2b+b^2c+c^2a\le a^3+b^3+c^3$$, $$a^2c+b^2a+c^2\le a^3+b^3+c^3$$ by the Rearrangement Inequality, thus

$$\begin{align*}\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}&= \frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{2abc+a^2b+b^2c+c^2a+a^2c+b^2a+c^2b}\\&\ge \frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{2\left(\frac{a^3+b^3+c^3}{3}\right)+2(a^3+b^3+c^3)}\\&=\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{\frac{8(a^3+b^3+c^3)}{3}}\\&=\frac{a^3+b^3+c^3}{3abc}+\frac{3abc}{a^3+b^3+c^3}\\&\ge 2\sqrt{\left(\frac{a^3+b^3+c^3}{3abc}\right)\left(\frac{3abc}{a^3+b^3+c^3}\right)}\text{by the AM-GM inequality}\\&=2\end{align*}$$
 
Albert said:
very innovative!

Thank you!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
834
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top