MHB Can You Solve the Olympiad Inequality Challenge with Positive Real Numbers?

Click For Summary
The discussion centers on proving the inequality involving positive real numbers \(a\), \(b\), and \(c\): \(\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}\ge 2\). Participants express appreciation for the innovative solutions presented. The conversation highlights the collaborative nature of problem-solving in mathematical challenges. Overall, the thread emphasizes the importance of sharing and discussing unique approaches to complex inequalities. Engaging in such discussions fosters a deeper understanding of mathematical concepts.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $a,\,b$ and $c$ are positive real numbers.

Prove that $$\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}\ge 2$$.
 
Mathematics news on Phys.org
Hint:

Focus could be put on minimizing $(a+b)(b+c)(c+a)$...
 
Here is my solution.

By the power mean inequality,

$$a^3 + b^3 + c^3 = \frac{a^3 + b^3}{2} + \frac{b^3 + c^3}{2} + \frac{c^3 + a^3}{2} \ge \left(\frac{a + b}{2}\right)^3 + \left(\frac{b + c}{2}\right)^3 + \left(\frac{c + a}{2}\right)^3$$
$$= \frac{(a + b)^3 + (b + c)^3 + (c + a)^3}{8} \ge \frac{3(a + b)(b + c)(c + a)}{8}$$

with equality if and only if $a = b = c$. So

$$\frac{a^3 + b^3 + c^3}{3abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge \frac{(a + b)(b + c)(c + a)}{8abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge 2$$

using the inequality $x + \frac{1}{x} \ge 2$ with $x = (a + b)(b + c)(c + a)/(8abc)$.
 
Euge said:
Here is my solution.

By the power mean inequality,

$$a^3 + b^3 + c^3 = \frac{a^3 + b^3}{2} + \frac{b^3 + c^3}{2} + \frac{c^3 + a^3}{2} \ge \left(\frac{a + b}{2}\right)^3 + \left(\frac{b + c}{2}\right)^3 + \left(\frac{c + a}{2}\right)^3$$
$$= \frac{(a + b)^3 + (b + c)^3 + (c + a)^3}{8} \ge \frac{3(a + b)(b + c)(c + a)}{8}$$

with equality if and only if $a = b = c$. So

$$\frac{a^3 + b^3 + c^3}{3abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge \frac{(a + b)(b + c)(c + a)}{8abc} + \frac{8abc}{(a + b)(b + c)(c + a)} \ge 2$$

using the inequality $x + \frac{1}{x} \ge 2$ with $x = (a + b)(b + c)(c + a)/(8abc)$.
very innovative!
 
Very well done, Euge!(Cool) And thanks for participating!

My solution:

First note that if we want to minimize the LHS of the target expression, we have to maximize the denominator for $$\frac{8abc}{(a+b)(b+c)(c+a)}$$.

And $$(a+b)(b+c)(c+a)=2abc+a^2b+b^2c+c^2a+a^2c+b^2a+c^2b$$, we have

$$abc\le \frac{a^3+b^3+c^3}{3}$$ by the AM-GM inequality, and both

$$a^2b+b^2c+c^2a\le a^3+b^3+c^3$$, $$a^2c+b^2a+c^2\le a^3+b^3+c^3$$ by the Rearrangement Inequality, thus

$$\begin{align*}\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}&= \frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{2abc+a^2b+b^2c+c^2a+a^2c+b^2a+c^2b}\\&\ge \frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{2\left(\frac{a^3+b^3+c^3}{3}\right)+2(a^3+b^3+c^3)}\\&=\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{\frac{8(a^3+b^3+c^3)}{3}}\\&=\frac{a^3+b^3+c^3}{3abc}+\frac{3abc}{a^3+b^3+c^3}\\&\ge 2\sqrt{\left(\frac{a^3+b^3+c^3}{3abc}\right)\left(\frac{3abc}{a^3+b^3+c^3}\right)}\text{by the AM-GM inequality}\\&=2\end{align*}$$
 
Albert said:
very innovative!

Thank you!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 66 ·
3
Replies
66
Views
7K
  • · Replies 1 ·
Replies
1
Views
896
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K