MHB Can You Solve These Challenging Definite Integral Problems?

sbhatnagar
Messages
87
Reaction score
0
Fun! Fun! Fun! Here are more entertaining problems:

1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)

2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin^2(x)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)

3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)

4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)

These problems are very simple only if you know the right trick.
 
Last edited:
Mathematics news on Phys.org
sbhatnagar said:
Fun! Fun! Fun! Here are more entertaining problems:

1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)
Put $x \mapsto 6-x$ then we've $ \begin{aligned} I & = \int_{2}^{4}\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}\;{dx} = \int_{2}^{4}\frac{\sqrt{\ln(3+x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(3+x)}}\;{dx}\end{aligned}$.
Add these together and we've $\begin{aligned}2I = \int_{2}^{4}\frac{\sqrt{\ln(9-x)}+\sqrt{\ln(3+x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}\;{dx} = \int_{2}^{4}\;{dx} = 2.\end{aligned}$ Therefore $I = 1$.
 
Last edited:
Whenever I teach Calculus I assign the following homework problem (same idea):

$$ \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } ~ dx $$
 
sbhatnagar said:
3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)
Put $x \mapsto -x$ then we've $\begin{aligned} I = \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^{x}}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^{-x}}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}.\end{aligned}$
Add them to get $\begin{aligned}2I = \int_{-\pi/2}^{\pi/2}\bigg(\frac{1}{1+4563^x}+\frac{1}{1+4563^{-x}}\bigg)\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = 2\int_{0}^{\pi/2}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}.\end{aligned}$
Let $x \mapsto \frac{\pi}{2}-x$ then $\begin{aligned}I = \int_{0}^{\pi/2}\frac{\sin^{6792}(\frac{\pi}{2}-x)}{\sin^{6792}(\frac{\pi}{2}-x)+\cos^{6792}(\frac{\pi}{2}-x)}\;{dx} = \int_{0}^{\pi/2}\frac{\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} \end{aligned}$, add them to get:
$\begin{aligned}2I = \int_{0}^{\pi/2}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}+\int_{0}^{\pi/2}\frac{\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \int_{0}^{\pi/2}\frac{\sin^{6792}{x}+\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \frac{\pi}{2}. \end{aligned}$ Thus $\begin{aligned}I = \frac{\pi}{4}.\end{aligned}$

---------- Post added at 05:07 PM ---------- Previous post was at 04:54 PM ----------

ThePerfectHacker said:
Whenever I teach Calculus I assign the following homework problem (same idea):

$$ \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } ~ dx $$

Let $x \mapsto 2-x$ then $ \begin{aligned} I= \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} = \int_0^2 \frac{ \sin^{2012} \left( \log (3-x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} \end{aligned}$

Therefore $ \begin{aligned} 2I = \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} + \int_0^2 \frac{ \sin^{2012} \left( \log (3-x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} \end{aligned}$, thus:
$ \begin{aligned}2I = \int_{0}^{2}\frac{\sin^{2012} \left( \log (1+x) \right) +\sin^{2012} \left( \log (3-x) \right)}{​\sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) }\;{dx} = \int_{0}^{2}\;{dx} = 2. \end{aligned}$ Hence $2I = 2$ and so $I = 1$.

What I find interesting is that the trick also applies to products and sums because the index can be shifted in the same way:

$\displaystyle \int_{a}^{b}f(x)\;{dx} = \int_{a}^{b}f(a+b-x)\;{dx}$, $\displaystyle \sum_{a \le k \le b}f(k) = \sum_{a \le k \le b}f(a+b-k) $ and $\displaystyle ~ \prod_{a \le k \le b}f(k) = \prod_{a \le k \le b}f(a+b-k). $

It's amazing! So you can also create a simple but monstrous looking sum or product when you are teaching these topics too.
 
Last edited:
I think you had a typo on this one; I fixed it so that it's similar to other integrals.
sbhatnagar said:
2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin(x^2)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)
Let $\displaystyle t = x^2$ then $\displaystyle I = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin{t}}{\sin{t}+\sin(\ln{6}-t)}\;{dt}$. Now put $t\mapsto \ln{6}-t$, and we've $\displaystyle I = \frac{1}{2}
\int_{\ln{2}}^{\ln{3}}\frac{\sin(\ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} $, therefore:
$\displaystyle 2I = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin{t}}{\sin{t}+\sin(\ln{6}-t)}\;{dt}+\frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin( \ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{\sin{t}+ \sin(\ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} = \frac{1}{2}\ln\left(\frac{3}{2}\right).$ So $\displaystyle I = \frac{1}{4}\ln\left(\frac{3}{2}\right).$

---------- Post added at 11:25 PM ---------- Previous post was at 10:40 PM ----------

sbhatnagar said:
4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)
Let $x\mapsto 2-x$ then $\displaystyle I = \int_{0}^{2}\frac{1}{(17+8x-4x^2)(e^{6(1-x)}+1)}\;{dx} = \int_{0}^{2}\frac{1}{(17+8x-4x^2)(e^{-6(1-x)}+1)}\;{dx}$.
Thus $\displaystyle 2I = \int_{0}^{2}\bigg(\frac{1}{e^{6(1-x)}+1}+\frac{1}{e^{-6(1-x)}+1}\bigg)\frac{1}{(17+8x-4x^2)}\;{dx} = \int_{0}^{2}\frac{1}{17+8x-4x^2}\;{dx},$ therefore:
$\displaystyle 2I = \int_{0}^{2}\frac{1}{2\sqrt{21}(2x+\sqrt{21}-2)}+\frac{1}{2\sqrt{21}(-2x+\sqrt{21}+2)}\;{dx} = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}-2+2x}{\sqrt{21}+2-2x}\bigg|_{0}^{2} = \frac{1}{2\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{ \sqrt{21}-2}\bigg|$

Therefore $\displaystyle I = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{ \sqrt{21}-2}\bigg|. $ There goes the last one. I had a field day with these integrals today. Thanks! :]


 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top