Can You Solve These Challenging Definite Integral Problems?

Click For Summary

Discussion Overview

The thread discusses a series of challenging definite integral problems, inviting participants to explore various techniques and tricks for solving them. The focus is on mathematical reasoning and problem-solving strategies rather than definitive solutions.

Discussion Character

  • Mathematical reasoning
  • Homework-related
  • Exploratory

Main Points Raised

  • One participant presents several definite integral problems, suggesting that they can be solved using specific tricks.
  • Another participant proposes a method for solving the first integral by applying a substitution and combining results, leading to a conclusion that the integral evaluates to 1.
  • A participant shares a similar homework problem involving a definite integral, indicating a common theme in the types of integrals being discussed.
  • For the third integral, a participant demonstrates a symmetry approach by substituting variables and combining integrals, arriving at a result of \(\frac{\pi}{4}\).
  • Another participant corrects a potential typo in one of the integral problems and provides a detailed solution using substitutions, concluding that the integral evaluates to \(\frac{1}{4}\ln\left(\frac{3}{2}\right)\).
  • For the last integral, a participant uses a symmetry argument and substitution to derive a result involving logarithmic expressions, concluding with a specific value for the integral.

Areas of Agreement / Disagreement

The discussion features multiple competing approaches and techniques for solving the integrals, with no consensus on a single method or final answers. Participants present their own solutions and corrections without resolving disagreements.

Contextual Notes

Some integrals involve substitutions that may depend on specific properties of the functions involved, and the correctness of each proposed solution is not universally agreed upon.

sbhatnagar
Messages
87
Reaction score
0
Fun! Fun! Fun! Here are more entertaining problems:

1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)

2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin^2(x)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)

3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)

4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)

These problems are very simple only if you know the right trick.
 
Last edited:
Physics news on Phys.org
sbhatnagar said:
Fun! Fun! Fun! Here are more entertaining problems:

1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)
Put $x \mapsto 6-x$ then we've $ \begin{aligned} I & = \int_{2}^{4}\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}\;{dx} = \int_{2}^{4}\frac{\sqrt{\ln(3+x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(3+x)}}\;{dx}\end{aligned}$.
Add these together and we've $\begin{aligned}2I = \int_{2}^{4}\frac{\sqrt{\ln(9-x)}+\sqrt{\ln(3+x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}\;{dx} = \int_{2}^{4}\;{dx} = 2.\end{aligned}$ Therefore $I = 1$.
 
Last edited:
Whenever I teach Calculus I assign the following homework problem (same idea):

$$ \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } ~ dx $$
 
sbhatnagar said:
3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)
Put $x \mapsto -x$ then we've $\begin{aligned} I = \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^{x}}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^{-x}}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}.\end{aligned}$
Add them to get $\begin{aligned}2I = \int_{-\pi/2}^{\pi/2}\bigg(\frac{1}{1+4563^x}+\frac{1}{1+4563^{-x}}\bigg)\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = 2\int_{0}^{\pi/2}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}.\end{aligned}$
Let $x \mapsto \frac{\pi}{2}-x$ then $\begin{aligned}I = \int_{0}^{\pi/2}\frac{\sin^{6792}(\frac{\pi}{2}-x)}{\sin^{6792}(\frac{\pi}{2}-x)+\cos^{6792}(\frac{\pi}{2}-x)}\;{dx} = \int_{0}^{\pi/2}\frac{\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} \end{aligned}$, add them to get:
$\begin{aligned}2I = \int_{0}^{\pi/2}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}+\int_{0}^{\pi/2}\frac{\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \int_{0}^{\pi/2}\frac{\sin^{6792}{x}+\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \frac{\pi}{2}. \end{aligned}$ Thus $\begin{aligned}I = \frac{\pi}{4}.\end{aligned}$

---------- Post added at 05:07 PM ---------- Previous post was at 04:54 PM ----------

ThePerfectHacker said:
Whenever I teach Calculus I assign the following homework problem (same idea):

$$ \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } ~ dx $$

Let $x \mapsto 2-x$ then $ \begin{aligned} I= \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} = \int_0^2 \frac{ \sin^{2012} \left( \log (3-x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} \end{aligned}$

Therefore $ \begin{aligned} 2I = \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} + \int_0^2 \frac{ \sin^{2012} \left( \log (3-x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} \end{aligned}$, thus:
$ \begin{aligned}2I = \int_{0}^{2}\frac{\sin^{2012} \left( \log (1+x) \right) +\sin^{2012} \left( \log (3-x) \right)}{​\sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) }\;{dx} = \int_{0}^{2}\;{dx} = 2. \end{aligned}$ Hence $2I = 2$ and so $I = 1$.

What I find interesting is that the trick also applies to products and sums because the index can be shifted in the same way:

$\displaystyle \int_{a}^{b}f(x)\;{dx} = \int_{a}^{b}f(a+b-x)\;{dx}$, $\displaystyle \sum_{a \le k \le b}f(k) = \sum_{a \le k \le b}f(a+b-k) $ and $\displaystyle ~ \prod_{a \le k \le b}f(k) = \prod_{a \le k \le b}f(a+b-k). $

It's amazing! So you can also create a simple but monstrous looking sum or product when you are teaching these topics too.
 
Last edited:
I think you had a typo on this one; I fixed it so that it's similar to other integrals.
sbhatnagar said:
2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin(x^2)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)
Let $\displaystyle t = x^2$ then $\displaystyle I = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin{t}}{\sin{t}+\sin(\ln{6}-t)}\;{dt}$. Now put $t\mapsto \ln{6}-t$, and we've $\displaystyle I = \frac{1}{2}
\int_{\ln{2}}^{\ln{3}}\frac{\sin(\ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} $, therefore:
$\displaystyle 2I = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin{t}}{\sin{t}+\sin(\ln{6}-t)}\;{dt}+\frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin( \ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{\sin{t}+ \sin(\ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} = \frac{1}{2}\ln\left(\frac{3}{2}\right).$ So $\displaystyle I = \frac{1}{4}\ln\left(\frac{3}{2}\right).$

---------- Post added at 11:25 PM ---------- Previous post was at 10:40 PM ----------

sbhatnagar said:
4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)
Let $x\mapsto 2-x$ then $\displaystyle I = \int_{0}^{2}\frac{1}{(17+8x-4x^2)(e^{6(1-x)}+1)}\;{dx} = \int_{0}^{2}\frac{1}{(17+8x-4x^2)(e^{-6(1-x)}+1)}\;{dx}$.
Thus $\displaystyle 2I = \int_{0}^{2}\bigg(\frac{1}{e^{6(1-x)}+1}+\frac{1}{e^{-6(1-x)}+1}\bigg)\frac{1}{(17+8x-4x^2)}\;{dx} = \int_{0}^{2}\frac{1}{17+8x-4x^2}\;{dx},$ therefore:
$\displaystyle 2I = \int_{0}^{2}\frac{1}{2\sqrt{21}(2x+\sqrt{21}-2)}+\frac{1}{2\sqrt{21}(-2x+\sqrt{21}+2)}\;{dx} = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}-2+2x}{\sqrt{21}+2-2x}\bigg|_{0}^{2} = \frac{1}{2\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{ \sqrt{21}-2}\bigg|$

Therefore $\displaystyle I = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{ \sqrt{21}-2}\bigg|. $ There goes the last one. I had a field day with these integrals today. Thanks! :]


 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K