Can You Solve These Challenging Definite Integral Problems?

Click For Summary
SUMMARY

This discussion focuses on solving challenging definite integral problems using specific techniques and substitutions. The integrals presented include \( \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx \) and \( \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \). Key strategies involve symmetry and substitution, such as \( x \mapsto 6-x \) and \( x \mapsto 2-x \), leading to simplified forms and definitive results. The integrals yield results like \( I = 1 \) and \( I = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{\sqrt{21}-2}\bigg|.

PREREQUISITES
  • Understanding of definite integrals and their properties
  • Familiarity with logarithmic and trigonometric functions
  • Knowledge of substitution techniques in calculus
  • Experience with symmetry in integrals
NEXT STEPS
  • Study advanced techniques in definite integrals, focusing on symmetry and substitution
  • Explore the properties of logarithmic and trigonometric integrals
  • Learn about integral transformations and their applications
  • Practice solving complex integrals using numerical methods and software tools like Wolfram Alpha
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in enhancing their skills in solving definite integrals and applying advanced techniques in calculus.

sbhatnagar
Messages
87
Reaction score
0
Fun! Fun! Fun! Here are more entertaining problems:

1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)

2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin^2(x)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)

3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)

4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)

These problems are very simple only if you know the right trick.
 
Last edited:
Physics news on Phys.org
sbhatnagar said:
Fun! Fun! Fun! Here are more entertaining problems:

1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)
Put $x \mapsto 6-x$ then we've $ \begin{aligned} I & = \int_{2}^{4}\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}\;{dx} = \int_{2}^{4}\frac{\sqrt{\ln(3+x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(3+x)}}\;{dx}\end{aligned}$.
Add these together and we've $\begin{aligned}2I = \int_{2}^{4}\frac{\sqrt{\ln(9-x)}+\sqrt{\ln(3+x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}\;{dx} = \int_{2}^{4}\;{dx} = 2.\end{aligned}$ Therefore $I = 1$.
 
Last edited:
Whenever I teach Calculus I assign the following homework problem (same idea):

$$ \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } ~ dx $$
 
sbhatnagar said:
3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)
Put $x \mapsto -x$ then we've $\begin{aligned} I = \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^{x}}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^{-x}}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}.\end{aligned}$
Add them to get $\begin{aligned}2I = \int_{-\pi/2}^{\pi/2}\bigg(\frac{1}{1+4563^x}+\frac{1}{1+4563^{-x}}\bigg)\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = 2\int_{0}^{\pi/2}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}.\end{aligned}$
Let $x \mapsto \frac{\pi}{2}-x$ then $\begin{aligned}I = \int_{0}^{\pi/2}\frac{\sin^{6792}(\frac{\pi}{2}-x)}{\sin^{6792}(\frac{\pi}{2}-x)+\cos^{6792}(\frac{\pi}{2}-x)}\;{dx} = \int_{0}^{\pi/2}\frac{\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} \end{aligned}$, add them to get:
$\begin{aligned}2I = \int_{0}^{\pi/2}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}+\int_{0}^{\pi/2}\frac{\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \int_{0}^{\pi/2}\frac{\sin^{6792}{x}+\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \frac{\pi}{2}. \end{aligned}$ Thus $\begin{aligned}I = \frac{\pi}{4}.\end{aligned}$

---------- Post added at 05:07 PM ---------- Previous post was at 04:54 PM ----------

ThePerfectHacker said:
Whenever I teach Calculus I assign the following homework problem (same idea):

$$ \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } ~ dx $$

Let $x \mapsto 2-x$ then $ \begin{aligned} I= \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} = \int_0^2 \frac{ \sin^{2012} \left( \log (3-x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} \end{aligned}$

Therefore $ \begin{aligned} 2I = \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} + \int_0^2 \frac{ \sin^{2012} \left( \log (3-x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} \end{aligned}$, thus:
$ \begin{aligned}2I = \int_{0}^{2}\frac{\sin^{2012} \left( \log (1+x) \right) +\sin^{2012} \left( \log (3-x) \right)}{​\sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) }\;{dx} = \int_{0}^{2}\;{dx} = 2. \end{aligned}$ Hence $2I = 2$ and so $I = 1$.

What I find interesting is that the trick also applies to products and sums because the index can be shifted in the same way:

$\displaystyle \int_{a}^{b}f(x)\;{dx} = \int_{a}^{b}f(a+b-x)\;{dx}$, $\displaystyle \sum_{a \le k \le b}f(k) = \sum_{a \le k \le b}f(a+b-k) $ and $\displaystyle ~ \prod_{a \le k \le b}f(k) = \prod_{a \le k \le b}f(a+b-k). $

It's amazing! So you can also create a simple but monstrous looking sum or product when you are teaching these topics too.
 
Last edited:
I think you had a typo on this one; I fixed it so that it's similar to other integrals.
sbhatnagar said:
2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin(x^2)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)
Let $\displaystyle t = x^2$ then $\displaystyle I = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin{t}}{\sin{t}+\sin(\ln{6}-t)}\;{dt}$. Now put $t\mapsto \ln{6}-t$, and we've $\displaystyle I = \frac{1}{2}
\int_{\ln{2}}^{\ln{3}}\frac{\sin(\ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} $, therefore:
$\displaystyle 2I = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin{t}}{\sin{t}+\sin(\ln{6}-t)}\;{dt}+\frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin( \ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{\sin{t}+ \sin(\ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} = \frac{1}{2}\ln\left(\frac{3}{2}\right).$ So $\displaystyle I = \frac{1}{4}\ln\left(\frac{3}{2}\right).$

---------- Post added at 11:25 PM ---------- Previous post was at 10:40 PM ----------

sbhatnagar said:
4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)
Let $x\mapsto 2-x$ then $\displaystyle I = \int_{0}^{2}\frac{1}{(17+8x-4x^2)(e^{6(1-x)}+1)}\;{dx} = \int_{0}^{2}\frac{1}{(17+8x-4x^2)(e^{-6(1-x)}+1)}\;{dx}$.
Thus $\displaystyle 2I = \int_{0}^{2}\bigg(\frac{1}{e^{6(1-x)}+1}+\frac{1}{e^{-6(1-x)}+1}\bigg)\frac{1}{(17+8x-4x^2)}\;{dx} = \int_{0}^{2}\frac{1}{17+8x-4x^2}\;{dx},$ therefore:
$\displaystyle 2I = \int_{0}^{2}\frac{1}{2\sqrt{21}(2x+\sqrt{21}-2)}+\frac{1}{2\sqrt{21}(-2x+\sqrt{21}+2)}\;{dx} = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}-2+2x}{\sqrt{21}+2-2x}\bigg|_{0}^{2} = \frac{1}{2\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{ \sqrt{21}-2}\bigg|$

Therefore $\displaystyle I = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{ \sqrt{21}-2}\bigg|. $ There goes the last one. I had a field day with these integrals today. Thanks! :]


 
Last edited:

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
989
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K