Can You Solve This Complex Trigonometric Integral?

Click For Summary

Discussion Overview

The discussion revolves around solving a complex trigonometric integral defined as \( I(a,b)=\int_{0}^{\pi / 2}\frac{1}{(a\cdot\cos^2{x}+b\cdot\sin^2{x})^2}dx \) with parameters \( a \) and \( b \) both greater than zero. Participants explore various approaches to evaluate this integral, including differentiation under the integral sign and transformations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents a method involving differentiation with respect to a parameter \( \lambda \) to derive the integral \( I(a, b) \) and provides a detailed calculation leading to \( I(a, b) = \frac{(a+b)\pi}{4a^{\frac{2}{3}}b^{\frac{2}{3}}} \).
  • Another participant proposes a similar approach, introducing a different integral \( J \) and deriving its value as \( \frac{\pi}{2\sqrt{ab}} \). They then differentiate \( J \) with respect to \( a \) and \( b \) to relate it back to \( I(a, b) \), ultimately concluding that \( I(a,b) = \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right) \).
  • A later reply expresses enthusiasm for the differentiation technique used in the calculations.

Areas of Agreement / Disagreement

Participants do not explicitly agree on a single solution, as different methods are presented, and no consensus is reached regarding the final form of the integral.

Contextual Notes

The discussion includes various mathematical transformations and assumptions about the parameters \( a \) and \( b \), but these are not fully resolved or agreed upon by all participants.

sbhatnagar
Messages
87
Reaction score
0
Can you solve the Integral?

\[ I(a,b)=\int_{0}^{\pi / 2}\frac{1}{(a\cdot\cos^2{x}+b\cdot\sin^2{x})^2}dx \quad a,b>0 \]
 
Last edited:
Physics news on Phys.org
Elementary, my dear Sbhatnagar. Let's first calculate:$$\displaystyle \begin{aligned} I( \lambda) & = \int_{0}^{\pi/2}\frac{1}{a~\cos^2{x}+b~\sin^2{x}-\lambda}\;{dx} \\& = \int_{0}^{\pi/2}\frac{1}{(a-\lambda)\cos^2{x}+(b-\lambda)\sin^2{x}}\;{dx} \\& = \int_{0}^{\pi/2}\frac{\sec^2{x}}{(a-\lambda)+(b-\lambda)\tan^2{x}}\;{dt} \\& = \int_{0}^{\infty}\frac{1}{(a-\lambda)+(b-\lambda)t^2}\;{dt} \\& = \frac{1}{\sqrt{a-\lambda}\sqrt{b-\lambda}}\bigg(\frac{\sqrt{b-\lambda}}{\sqrt{a-\lambda}}t\bigg)_{0}^{\infty}\\& = \frac{\pi}{2\sqrt{a-\lambda}\sqrt{b-\lambda}}.\end{aligned} $$

But $\displaystyle I(a, b) = I'(\lambda)|_{\lambda = 0} = \frac{(a+b-2\lambda)\pi}{4(a-\lambda)^{\frac{3}{2}}((b-\lambda)^{\frac{3}{2}}}\bigg|_{\lambda = 0} = \frac{(a+b)\pi}{4a^{\frac{2}{3}}b^{\frac{2}{3}}}.$

 
Nice! I also solved the problem by a similar approach.

Let \( \displaystyle J=\int_{0}^{\pi / 2} \frac{1}{a\cos^2{x}+b\sin^2{x}}dx \)

\[ \begin{align*} J &= \int_{0}^{\pi / 2} \frac{1}{a\cos^2{x}+b\sin^2{x}}dx \\ &= \int_{0}^{\infty} \frac{1}{a+bx^2}dx \\ &= \frac{1}{\sqrt{ab}} \tan^{-1}{\left(\frac{x\sqrt{b}}{\sqrt{a}} \right)}\Big|_0^{\infty}\\ &= \frac{\pi}{2\sqrt{ab}}\end{align*} \]

Now,

\( \displaystyle \begin{align*} \frac{dJ}{da}&=-\int_{0}^{\pi / 2}\frac{\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx\\ \frac{\pi}{4\sqrt{a^3 b}} &= \int_{0}^{\pi / 2}\frac{\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx \quad [1]\end{align*} \)

also

\( \displaystyle \begin{align*} \frac{dJ}{db}&=-\int_{0}^{\pi / 2}\frac{\sin^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx\\ \frac{\pi}{4\sqrt{a b^3}} &= \int_{0}^{\pi / 2}\frac{\sin^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx \quad [2]\end{align*} \)

Adding [1] and [2]:

\( \displaystyle \begin{align*} \int_{0}^{\pi / 2}\frac{\sin^2(x)+\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx &= \frac{\pi}{4\sqrt{a^3 b}}+\frac{\pi}{\sqrt{b^3 a}} \\ \int_{0}^{\pi / 2}\frac{1}{(a\cos^2{x}+b\sin^2{x})^2}dx &= \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right) \\ I(a,b) &= \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right)\end{align*}\)
 
Magic differentiation for the win! (Smile)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K