MHB Can You Solve This Complex Trigonometric Integral?

Click For Summary
The discussion focuses on solving the integral \( I(a,b) = \int_{0}^{\pi / 2}\frac{1}{(a\cdot\cos^2{x}+b\cdot\sin^2{x})^2}dx \) for positive constants \( a \) and \( b \). Participants derive the solution using differentiation under the integral sign and transformations, leading to the result \( I(a,b) = \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right) \). One contributor also explores a related integral \( J \) and its derivatives, demonstrating a similar approach to arrive at the solution. The discussion highlights the effectiveness of differentiation techniques in evaluating complex integrals. The final result showcases the interplay between trigonometric functions and integral calculus.
sbhatnagar
Messages
87
Reaction score
0
Can you solve the Integral?

\[ I(a,b)=\int_{0}^{\pi / 2}\frac{1}{(a\cdot\cos^2{x}+b\cdot\sin^2{x})^2}dx \quad a,b>0 \]
 
Last edited:
Mathematics news on Phys.org
Elementary, my dear Sbhatnagar. Let's first calculate:$$\displaystyle \begin{aligned} I( \lambda) & = \int_{0}^{\pi/2}\frac{1}{a~\cos^2{x}+b~\sin^2{x}-\lambda}\;{dx} \\& = \int_{0}^{\pi/2}\frac{1}{(a-\lambda)\cos^2{x}+(b-\lambda)\sin^2{x}}\;{dx} \\& = \int_{0}^{\pi/2}\frac{\sec^2{x}}{(a-\lambda)+(b-\lambda)\tan^2{x}}\;{dt} \\& = \int_{0}^{\infty}\frac{1}{(a-\lambda)+(b-\lambda)t^2}\;{dt} \\& = \frac{1}{\sqrt{a-\lambda}\sqrt{b-\lambda}}\bigg(\frac{\sqrt{b-\lambda}}{\sqrt{a-\lambda}}t\bigg)_{0}^{\infty}\\& = \frac{\pi}{2\sqrt{a-\lambda}\sqrt{b-\lambda}}.\end{aligned} $$

But $\displaystyle I(a, b) = I'(\lambda)|_{\lambda = 0} = \frac{(a+b-2\lambda)\pi}{4(a-\lambda)^{\frac{3}{2}}((b-\lambda)^{\frac{3}{2}}}\bigg|_{\lambda = 0} = \frac{(a+b)\pi}{4a^{\frac{2}{3}}b^{\frac{2}{3}}}.$

 
Nice! I also solved the problem by a similar approach.

Let \( \displaystyle J=\int_{0}^{\pi / 2} \frac{1}{a\cos^2{x}+b\sin^2{x}}dx \)

\[ \begin{align*} J &= \int_{0}^{\pi / 2} \frac{1}{a\cos^2{x}+b\sin^2{x}}dx \\ &= \int_{0}^{\infty} \frac{1}{a+bx^2}dx \\ &= \frac{1}{\sqrt{ab}} \tan^{-1}{\left(\frac{x\sqrt{b}}{\sqrt{a}} \right)}\Big|_0^{\infty}\\ &= \frac{\pi}{2\sqrt{ab}}\end{align*} \]

Now,

\( \displaystyle \begin{align*} \frac{dJ}{da}&=-\int_{0}^{\pi / 2}\frac{\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx\\ \frac{\pi}{4\sqrt{a^3 b}} &= \int_{0}^{\pi / 2}\frac{\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx \quad [1]\end{align*} \)

also

\( \displaystyle \begin{align*} \frac{dJ}{db}&=-\int_{0}^{\pi / 2}\frac{\sin^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx\\ \frac{\pi}{4\sqrt{a b^3}} &= \int_{0}^{\pi / 2}\frac{\sin^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx \quad [2]\end{align*} \)

Adding [1] and [2]:

\( \displaystyle \begin{align*} \int_{0}^{\pi / 2}\frac{\sin^2(x)+\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx &= \frac{\pi}{4\sqrt{a^3 b}}+\frac{\pi}{\sqrt{b^3 a}} \\ \int_{0}^{\pi / 2}\frac{1}{(a\cos^2{x}+b\sin^2{x})^2}dx &= \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right) \\ I(a,b) &= \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right)\end{align*}\)
 
Magic differentiation for the win! (Smile)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K