Can You Solve This Complex Trigonometric Integral?

Click For Summary
SUMMARY

The integral \( I(a,b)=\int_{0}^{\pi / 2}\frac{1}{(a\cdot\cos^2{x}+b\cdot\sin^2{x})^2}dx \) can be solved using differentiation under the integral sign. The solution is \( I(a,b) = \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right) \). Additionally, the related integral \( J=\int_{0}^{\pi / 2} \frac{1}{a\cos^2{x}+b\sin^2{x}}dx \) evaluates to \( \frac{\pi}{2\sqrt{ab}} \). Both integrals utilize trigonometric identities and properties of definite integrals to derive their solutions.

PREREQUISITES
  • Understanding of trigonometric integrals
  • Familiarity with differentiation under the integral sign
  • Knowledge of definite integrals and their properties
  • Basic calculus concepts, including integration techniques
NEXT STEPS
  • Study advanced techniques in integration, specifically differentiation under the integral sign
  • Explore the properties of trigonometric integrals in greater depth
  • Learn about the applications of integrals in physics and engineering contexts
  • Investigate related integrals and their solutions, such as elliptic integrals
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced calculus and integral solutions will benefit from this discussion.

sbhatnagar
Messages
87
Reaction score
0
Can you solve the Integral?

\[ I(a,b)=\int_{0}^{\pi / 2}\frac{1}{(a\cdot\cos^2{x}+b\cdot\sin^2{x})^2}dx \quad a,b>0 \]
 
Last edited:
Physics news on Phys.org
Elementary, my dear Sbhatnagar. Let's first calculate:$$\displaystyle \begin{aligned} I( \lambda) & = \int_{0}^{\pi/2}\frac{1}{a~\cos^2{x}+b~\sin^2{x}-\lambda}\;{dx} \\& = \int_{0}^{\pi/2}\frac{1}{(a-\lambda)\cos^2{x}+(b-\lambda)\sin^2{x}}\;{dx} \\& = \int_{0}^{\pi/2}\frac{\sec^2{x}}{(a-\lambda)+(b-\lambda)\tan^2{x}}\;{dt} \\& = \int_{0}^{\infty}\frac{1}{(a-\lambda)+(b-\lambda)t^2}\;{dt} \\& = \frac{1}{\sqrt{a-\lambda}\sqrt{b-\lambda}}\bigg(\frac{\sqrt{b-\lambda}}{\sqrt{a-\lambda}}t\bigg)_{0}^{\infty}\\& = \frac{\pi}{2\sqrt{a-\lambda}\sqrt{b-\lambda}}.\end{aligned} $$

But $\displaystyle I(a, b) = I'(\lambda)|_{\lambda = 0} = \frac{(a+b-2\lambda)\pi}{4(a-\lambda)^{\frac{3}{2}}((b-\lambda)^{\frac{3}{2}}}\bigg|_{\lambda = 0} = \frac{(a+b)\pi}{4a^{\frac{2}{3}}b^{\frac{2}{3}}}.$

 
Nice! I also solved the problem by a similar approach.

Let \( \displaystyle J=\int_{0}^{\pi / 2} \frac{1}{a\cos^2{x}+b\sin^2{x}}dx \)

\[ \begin{align*} J &= \int_{0}^{\pi / 2} \frac{1}{a\cos^2{x}+b\sin^2{x}}dx \\ &= \int_{0}^{\infty} \frac{1}{a+bx^2}dx \\ &= \frac{1}{\sqrt{ab}} \tan^{-1}{\left(\frac{x\sqrt{b}}{\sqrt{a}} \right)}\Big|_0^{\infty}\\ &= \frac{\pi}{2\sqrt{ab}}\end{align*} \]

Now,

\( \displaystyle \begin{align*} \frac{dJ}{da}&=-\int_{0}^{\pi / 2}\frac{\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx\\ \frac{\pi}{4\sqrt{a^3 b}} &= \int_{0}^{\pi / 2}\frac{\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx \quad [1]\end{align*} \)

also

\( \displaystyle \begin{align*} \frac{dJ}{db}&=-\int_{0}^{\pi / 2}\frac{\sin^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx\\ \frac{\pi}{4\sqrt{a b^3}} &= \int_{0}^{\pi / 2}\frac{\sin^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx \quad [2]\end{align*} \)

Adding [1] and [2]:

\( \displaystyle \begin{align*} \int_{0}^{\pi / 2}\frac{\sin^2(x)+\cos^2(x)}{(a\cos^2{x}+b\sin^2{x})^2} dx &= \frac{\pi}{4\sqrt{a^3 b}}+\frac{\pi}{\sqrt{b^3 a}} \\ \int_{0}^{\pi / 2}\frac{1}{(a\cos^2{x}+b\sin^2{x})^2}dx &= \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right) \\ I(a,b) &= \frac{\pi}{4\sqrt{ab}}\left( \frac{1}{a}+\frac{1}{b}\right)\end{align*}\)
 
Magic differentiation for the win! (Smile)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K