MHB Can you solve this double cubic algebraic equation?

  • Thread starter Thread starter DrLiangMath
  • Start date Start date
  • Tags Tags
    Cubic
AI Thread Summary
The discussion focuses on solving a double cubic algebraic equation by considering the expression $x+\frac{1}{x}$ as a whole. It identifies four real solutions: $x=\frac{3±\sqrt{5}}{2}$ and $x=\frac{-3±\sqrt{5}}{2}$, along with two complex solutions: $x=±i$. An alternative method suggested involves multiplying both sides by $x^3$ and substituting $y = x^2$, leading to a simpler cubic equation that can be solved using the rational root theorem. The participants express appreciation for each other's ideas and methods. The thread highlights various approaches to solving the equation effectively.
DrLiangMath
Messages
21
Reaction score
0
TN-DoubleCubic.png
 
Mathematics news on Phys.org
The key idea is to view $x+\frac{1}{x}$ as a whole. There are four real solutions: $x=\frac{3±\sqrt{5}}{2}$, $x=\frac{-3±\sqrt{5}}{2}$ (and two complex solutions: $x=±i$). Here is the explanation:
 
MathTutoringByDrLiang said:
The key idea is to view $x+\frac{1}{x}$ as a whole. There are four real solutions: $x=\frac{3±\sqrt{5}}{2}$, $x=\frac{-3±\sqrt{5}}{2}$ (and two complex solutions: $x=±i$). Here is the explanation:

Nice idea!

Or you could just multiply both sides by $x^3$ and sub in $y = x^2$. The resulting cubic equation for y is easy to solve using the rational root theorem.

-Dan
 
topsquark said:
Nice idea!

Or you could just multiply both sides by $x^3$ and sub in $y = x^2$. The resulting cubic equation for y is easy to solve using the rational root theorem.

-Dan
Thank you very much for your feedback!

Derek
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top