MHB Can You Solve This Triangle Cotangent Ratio Problem?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The problem involves a triangle ABC with sides a, b, and c, where the relationship 9a² + 9b² = 19c² is given. The goal is to evaluate the expression cot C / (cot A + cot B). Several members successfully solved the problem, including lfdahl, BAdhi, kaliprasad, and Opalg. BAdhi provided a solution, while Opalg offered an alternate approach. The discussion highlights the methods used to tackle the cotangent ratio in relation to the triangle's side lengths.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Given $a,\,b$ and $c$ are sides of $\triangle ABC$ such that $9a^{2}+9b^{2}=19c^{2}$.

Evaluate $\dfrac{\cot C}{\cot A+\cot B}$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:

1. lfdahl
2. BAdhi
3. kaliprasad
4. Opalg

Solution from BAdhi:
Lets rearrange the required result,

\begin{align*}\displaystyle
\frac{\cot C}{\cot A + \cot B} =& \frac{\cos C}{\sin C(\frac{\cos A}{\sin A} + \frac{\cos B}{\sin B})}\\
=& \frac{\cos C \sin A \sin B}{\sin C ( \cos A \sin B + \sin A \cos B)} \\
=& \frac{\cos C \sin A \sin B}{\sin C [ \sin (A+B) ]} \\
\end{align*}

using the property,

$$\sin(A + B) = \sin(\pi - C)$$

we get

\begin{align*}\displaystyle
\frac{\cot C}{\cot A + \cot B}
=& \frac{\cos C \sin A \sin B}{\sin C \sin (\pi - C) } \\
=& \frac{\cos C \sin A \sin B}{\sin^2C } \\
=& \cos C \frac{\sin A }{\sin C}\frac{\sin B}{\sin C}\\
\end{align*}

Applying the sin and cosine rules,

$$\frac{ \sin A }{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

The expression could be reduced as following,

\begin{align*}\displaystyle
\frac{\cot C}{\cot A + \cot B}
= & \cos C \left( \frac{a}{c} \right) \left( \frac{b}{c} \right) \\
=& \frac{(a^2 + b^2 - c^2)}{2ab}\frac{ab}{c^2}\\
=& \frac{1}{2} \left(\left[\frac ac\right]^2 + \left[\frac bc\right]^2 - 1\right) \\
\end{align*}

Now let's adjust the given property,

\begin{align*}\displaystyle
9a^2 + 9 b^2 =& 19c^2 \\
9\left[ \left(\frac a c\right)^2 + \left( \frac bc\right)^2\right] =& 19\\
\left[ \left(\frac a c\right)^2 + \left( \frac bc\right)^2\right] = & \frac{19}{9}
\end{align*}Using this to above expression we get,\begin{align*}\displaystyle
\frac{\cot C}{\cot A + \cot B}
=& \frac 1 2 \left(\frac{19}{9} - 1\right) \\
=& \frac 5 9
\end{align*}

Alternate solution from Opalg:
\[ \frac{\cot C}{\cot A + \cot B} = \frac{\frac{\cos C}{\sin C}}{\frac{\cos A}{\sin A} + \frac{\cos B}{\sin B}} = \frac{\cos C\sin A\sin B}{\sin C(\cos A\sin B + \cos B\sin A)} = \frac{\sin A\sin B\cos C}{\sin C\sin(A+B)} = \frac{\sin A\sin B\cos C}{\sin^2 C} \] (because $\sin C = \sin(\pi-C) = \sin(A+B)$).

By the sine rule, $\sin A$, $\sin B$, $\sin C$ are proportional to $a$, $b$, $c$. Therefore $\dfrac{\sin A\sin B}{\sin^2 C} = \dfrac {ab}{c^2}$.

By the cosine rule $\cos C = \dfrac{a^2 + b^2 - c^2}{2ab} = \dfrac{\frac{19}9c^2 - c^2}{2ab} = \dfrac{10c^2}{18ab} = \dfrac{5c^2}{9ab}$.

Therefore $\dfrac{\cot C}{\cot A + \cot B} = \dfrac{ab}{c^2}\dfrac{5c^2}{9ab} = \dfrac59$.
 
Back
Top