MHB Can You Tackle Holder's Inequality with Finite Moments in Statistics?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
The discussion presents a problem of the week (POTW) involving random variables X and Y, with specific conditions on their moments. It states that if X has a finite p-th absolute moment and Y has a finite q-th absolute moment, the inequality involving their expected values and absolute moments must hold. The inequality is expressed as the product of the p-th and q-th moments being less than or equal to the expected value of the product of X and Y. Despite the complexity of the problem, no solutions were provided by participants. The thread emphasizes the importance of understanding Holder's inequality in the context of finite moments in statistics.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $X$ and $Y$ be random variables. Suppose $-\infty < q < 0$ and $p > 0$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Show that if $X$ and $Y$ have finite $p$-th and $q$-th absolute moments, respectively, then

$$\left(\Bbb E[|X|^p]\right)^{1/p} \cdot \left(\Bbb E[|Y|^q] \right)^{1/q}\le \Bbb E|XY|.$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
Since $\frac{1}{p} + \frac{1}{q} = 1$, then $p + q = pq$. Using that fact, we find that the numbers $-q/p$ and $1/p$ are conjugate exponents; they are positive numbers such that

$$\frac{1}{-q/p} + \frac{1}{1/p} = -\frac{p}{q} + p = \frac{-p + pq}{q} = \frac{-p + (p + q)}{q} = \frac{q}{q} = 1.$$

Hence, by Holder's inequality,

$$\Bbb E[|X|^p] = \Bbb E[|XY|^p|Y|^{-p}] \le \left(\Bbb E[(|XY|^p)^{1/p}]\right)^{p} \left(\Bbb E[(|Y|^{-p})^{-q/p}]\right)^{-p/q} = (\Bbb E[|XY|])^p\, (\Bbb E[|Y|^q])^{-p/q}.$$

Taking the $p$th root results in

$$(\Bbb E[|X|^p])^{1/p} \le \Bbb E[|XY|]\, (\Bbb E[|Y|^q])^{-1/q}.$$

Multiplying this inequality by $(\Bbb E[|Y|^q])^{1/q}$ gives the result.
 

Similar threads

Replies
1
Views
3K
Replies
1
Views
3K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K