Can't find the determinant of the Jacobian

Click For Summary
The discussion centers on finding the determinant of the Jacobian matrix H, defined as the product of two matrices involving derivatives of u and v with respect to a and b, and a and b with respect to x and y. The initial calculations led to confusion regarding the equivalence of two expressions for the determinant, specifically $$16((ln x)^2 - (ln y)^2)/(xy)$$ and $$16*ln(xy) * ln(x/y)/(xy)$$. After some algebra and simplification using logarithmic identities, it was revealed that both expressions are indeed the same. The resolution highlights the importance of correctly applying logarithmic properties in such calculations. Ultimately, the misunderstanding was cleared up with a proper application of logarithmic relations.
Addez123
Messages
199
Reaction score
21
Homework Statement
Determin the determinant for the image (x,y) -> (u,v)
u = a^2 + b^2
v = a^2 - b^2
a = ln(xy)
b = ln(x/y)
Relevant Equations
Matrices
The way I approach it was, we're looking for det(H) where H = h(u, v)
$$H = \begin{bmatrix}
du/da & du/db \\
dv/da & dv/db
\end{bmatrix} *
\begin{bmatrix}
da/dx & da/dy \\
db/dx & db/dy
\end{bmatrix}$$

I just multiply those two matrices and then get the determinant. The answer is
$$16((ln x)^2 - (ln y)^2)/(xy)$$

But all I get is
$$16*ln(xy) * ln(x/y)/(xy)$$

I've counted it twice so if something is wrong its the matrices or the way I think.
 
Physics news on Phys.org
You have the same function for ##u## and ##v##.
 
PeroK said:
You have the same function for ##u## and ##v##.
sorry! v was suppose to have a minus sign in it.
 
Addez123 said:
I just multiply those two matrices and then get the determinant. The answer is
$$16((ln x)^2 - (ln y)^2)/(xy)$$

But all I get is
$$16*ln(xy) * ln(x/y)/(xy)$$
Are they different?
 
Unless ln(xy) = 2 they are, right?
 
Addez123 said:
Unless ln(xy) = 2 they are, right?
If you have a spreadsheet on your computer, why not plug in some values for ##x## and ##y## and see?
 
And/or, do a bit of algebra.
 
I plugged both equations into wolfram, they are not the same.

Trying to make my equation look like the first equation results in this

$$16((ln x)^{ln(xy)} - (ln y)^{ln(xy)})/(xy)$$
which is not the same.
 
Addez123 said:
I plugged both equations into wolfram, they are not the same.

Trying to make my equation look like the first equation results in this

$$16((ln x)^{ln(xy)} - (ln y)^{ln(xy)})/(xy)$$
which is not the same.
Give me an example of ##x, y## where: $$(ln x)^2 - (ln y)^2 \ne ln(xy)ln(x/y)$$
 
  • Skeptical
Likes Addez123
  • #10
Did you try simplifying a bit by using logarithm relations such as ln(xy) = ln(x) ln(y)?
 
  • #11
Orodruin said:
Did you try simplifying a bit by using logarithm relations such as ln(xy) = ln(x) ln(y)?
I hope that one isn't in your book!
 
  • Like
Likes Addez123
  • #12
PeroK said:
Give me an example of ##x, y## where: $$(ln x)^2 - (ln y)^2 \ne ln(xy)ln(x/y)$$
Wow. Turns out it was the same!
Turning ln(xy) = ln(x) + ln(y)
and ln(x/y) = ln(x) - ln(y)
and then just multiplying gives the correct answer.

Wierd I didnt see that!
Thanks!
 

Similar threads

Replies
3
Views
2K
Replies
10
Views
2K
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K