MHB Cantor Diagonalization | Find a Number Not on the List

AI Thread Summary
Cantor's diagonalization argument demonstrates how to construct a number not present in a given list of real numbers. By altering the nth digit of the nth number in the list, a new number is created that differs from each listed number at least in one digit. In this example, using the digits 2 and 4, the process generates the number 0.24224... which is not included in the original list. This method illustrates that even with an infinite list, it is possible to find a real number that is not accounted for, proving that the set of real numbers is uncountable. Thus, Cantor's argument effectively shows the limitations of listing real numbers.
anyalong18
Messages
4
Reaction score
0
Consider the following list of numbers. Using Cantor's diagonalization argument, find a number not on the list (use 2 and 4 when applying Cantor' argument). Give a brief explanation of the process.

0.123456876…

0.254896487…

0.143256876…

0.758468126…

0.534157162…
 
Mathematics news on Phys.org
It's not a good idea to ask other people to do something trivial, which you can easily do yourself. For example, suppose you are told to compute $1\oplus 1$. You say, "I don't know, I need help with this". The person who gave you this problem asks, "What kind of help? What exactly don't you understand?" You say, "I don't know what $\oplus$ denotes". "Well, to calculate $x\oplus y$ you need to add $x$ and $y$ and then take the remainder when the sum is divided by 2. So the answer is 0 if the sum is even and 1 if the sum is odd. Can you solve the problem now?" "Of course, the answer is 0".

So it is with this problem. If you understood what the Cantor's diagonalization argument is, solving the problem would be trivial. But if you don't understand the argument, you should ask questions about the argument itself, not about how to use it. Otherwise you leave open a possibility that you know and understand the Cantor's argument but cannot be bothered to do a trivial computation. So get a good textbook and tell us what is the first sentence in the description of the Cantor's argument that you don't understand and why.
 
Do you not know what "Cantor diagonalization" is or do you just want some one to do the work for you?

The idea is that we can create a new number, not on a given list, by changing the first digit of the first number, the second digit of the second number, the third digit of the third number, etc.

The first digit of the first number is "1" so write any digit except 1. Since the instructions say " use 2 and 4 when applying Cantor' argument", write "2"instead. The second digit of the second number is "5" so write "2" instead. The third digit of the third word is "3" so write "2" instead. So far that gives 222...

Keep using "2" until the number you want to replace IS "2" and then use "4" instead.

Now, can you explain why this guarantees, even though we have an infinite list of numbers, that this number is not any where on the list.
 
Since this has been here a while:
The first number is
0.123456876…
Cantor's method would replace that "1" by any other digit. Since here we have been told to "use 2 and 4", I will replace it by "2" so my number starts "0.2"

The second number is
0.254896487…
We want to replace the second digit, "5", by any other digit. I will choose "4" so now we have "0.24".

The third number is 0.143256876…
We want to repace the third digit, "3", by any other digit. I will choose "2" so now we have "0.242".

The fourth number is
0.758468126…
We want to replace the fourth digit, "4", by any other digit. I will have to use "2" since I am supposed to use either "2" or "4" and I cannot use "4". Now we have "0.2422".

The fifth number is 0.534157162…
We want to replace the fifth digit, "5", by any other digit. I choose "4" so now we have 0.24224.

It is trivial to see that the number 0.24224... is not on this list. The point is that we can continue doing this "infinitely" so that, even if we had an infinite list of numbers we could create another number that is NOT on that list- the set of all real numbers is NOT "countable".
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
22
Views
3K
Replies
19
Views
2K
Replies
32
Views
3K
Replies
9
Views
3K
Replies
43
Views
5K
Replies
6
Views
3K
Replies
86
Views
9K
Replies
4
Views
3K
Back
Top