Capacitance of infinitely long coaxial cylinders of elliptical section

Rlwe
Messages
18
Reaction score
1
Homework Statement
Find the capacitance per unit length between two infinitely long coaxial cylinders of elliptical section given by eqs. $$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$$ $$\frac{x^2}{a_2^2}+\frac{y^2}{b_2^2}=1$$ where $$\frac{a_2}{a_1}=\frac{b_2}{b_1}$$ and $$b_1\geq a_1\,,\quad b_2\geq a_2\,,\quad a_2>a_1$$
Relevant Equations
Laplace equation in 2D
I've been able to prove the following inequality $$\frac{2\pi\epsilon_0}{\log\left(\frac{b_1b_2}{a_1^2}\right)}\leq C \leq \frac{2\pi\epsilon_0}{\log\left(\frac{a_1a_2}{b_1^2}\right)}$$ but have no clue how to obtain exact value. Can someone check whether this inequality is correct and show how to obtain the exact value?
 
Physics news on Phys.org
Please show us your work.
 
vela said:
Please show us your work.
Sorry, it isn't really a homework (maybe I shouldn't have posted it under HW help, sorry) but a problem I invented. I found this paper (p.10) which deals with a system of confocal ellipses and uses special system of coords to solve it. However, I couldn't find any reference that deals with similar ellipses.
 
Rlwe said:
it isn't really a homework (maybe I shouldn't have posted it under HW help, sorry) but a problem I invented.
It is still schoolwork-like, so you did the right thing to post it in the schoolwork forums. :smile:
 
I suggest you use the Joukowski conformal transformation to map ellipses in the ##z## plane (##z=x+iy##) to disks in the ##w## plane (##w=u+iv##), then compute the capacitance in the ##w## plane with cylindrical symmetry (not hard). The Joukowski transformation is,
$$
z=\alpha w + \frac{\beta}{w}
$$
$$
z_{1,2}=x_{1,2}+iy_{1,2}=\alpha_{1,2} (u_{1,2}+iv_{1,2}) + \beta_{1,2} \frac{u_{1,2}-iv_{1,2}}{R_{1,2}^2}
$$
where ##R_{1,2}## are the radii of the disks in the ##w## plane. Equating real and imaginary parts, the equation ## u^2_{1,2} + v^2_{1,2}=R^2_{1,2}## becomes,
$$
\frac{x^2_{1,2} }{\alpha_{1,2} + \frac{\beta_{1,2} }{R^2_{1,2}}} +\frac{y^2_{1,2} }{\alpha_{1,2} - \frac{\beta_{1,2} }{R^2_{1,2}}}=1
$$
where,
$$
a_{1,2}=|\alpha_{1,2} + \frac{\beta_{1,2} }{R^2_{1,2}} |
$$
$$
b_{1,2}=|\alpha_{1,2} - \frac{\beta_{1,2} }{R^2_{1,2}} |
$$
You will have to choose a scale for your problem i.e. ##a_2=\gamma a_1## and ##b_2=\gamma b_1##. From this and the given conditions and constraints you can compute the ratio ##\frac{R_2}{R_1}##.
 
  • Informative
  • Like
Likes vanhees71 and berkeman
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top