Car that undergoes non-uniform circular motion

AI Thread Summary
The discussion centers on the calculations of a car undergoing non-uniform circular motion, specifically addressing the frictional forces involved. The solution manual states that the resultant friction force must be less than or equal to the product of the coefficient of friction and the gravitational force, leading to the derived maximum velocity equation. Questions arise regarding the use of the less-than-or-equal-to sign for kinetic friction, which is typically constant at kN, and the interpretation of when the car is considered to be slipping or not. It is suggested that the book may be conflating static friction with kinetic friction in its analysis of the car's motion. Clarification on these points is essential for understanding the conditions under which the car maintains traction.
Father_Ing
Messages
33
Reaction score
3
Homework Statement
A car moves with a constant tangential acceleration Wt along a horizontal surface circumscribing a circle of radius R. The coefficient of sliding friction between the wheels and the surface is k. What distance will the car ride without sliding if at the initial moment of time its velocity is zero?
Relevant Equations
f ≤ kN
In the solution manual, it says that:
the resultant of friction force is ##<= kmg##, hence $$m\sqrt{\omega_t^2 + (\frac {v^2} {R})^2} <= kmg$$
and from this equation, we will get $$v^2 <= R \sqrt{(kg)^2 -\omega_t^2}$$
which will make ##v_{max}^2= R \sqrt{(kg)^2 -\omega_t^2}##
Finally, they calculate the distance by using ##s = \frac{v_{max}^2} {2 \omega_t}##

Now, my question is:
1.As far as I'm concerned, unlike static friction, kinetic friction has no maximum value; it is always equal to ##kN##. Why does the book use <= sign?
2.From my interpretation, What the book asks is that at what distance will the the car start to ride without slipping. Then, why the car is considered as not slipping when it reaches ##v_{max}##?
 
Physics news on Phys.org
Looks to me like they meant static friction.
 
  • Like
Likes collinsmark
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top