MHB Cardano's method of solving cubics

  • Thread starter Thread starter mathmaniac1
  • Start date Start date
  • Tags Tags
    Method
mathmaniac1
Messages
158
Reaction score
0
Solve using cardan's method.

$$x^3-13x+12=0$$

$$x=v+u$$

$$3uv=-p=13$$

$$v^3+u^3=-q=-12$$

$$27v^6+324v^3-13=0$$

$$v^3=\frac{-324\pm\sqrt{324^2-27*4*13}}{54}$$

Please solve for x.I know I am asking for too much,but seems like I am not able to get the desired answers even though nothing seems wrong with the method.

I would be so grateful towards anybody who helps.

For the moderator: please change * to x,I don't know how to do that.
Thanks
 
Last edited:
Mathematics news on Phys.org
Cardano's formula states that $x = u+v$ is a solution to $x^{3} +px+q =0$ where $u = \Big(-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3} \right)^{3}} \Big)^{\frac{1}{3}}$

and $v = \Big(-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3} \right)^{3}} \Big)^{\frac{1}{3}}$.

So for $x^{3}-13x+12 = 0$ we have $u = \Big(-6 + \sqrt{36 -\frac{2917}{27}} \Big)^{\frac{1}{3}} = \Big(-6 + \sqrt{-\frac{1225}{27}} \Big)^{\frac{1}{3}}$

$= \Big(-6 + \frac{35 i}{3 \sqrt{3}} \Big)^{\frac{1}{3}}$

which according to Wolfram Alpha equals $\Big( \frac{1}{216} \left( 9 + 5 \sqrt{3}i \right)^{3} \Big)^{\frac{1}{3}} = \frac{1}{6} \left(9 + 5 \sqrt{3} i \right)$

And $v$ is the complex conjugate of $u$, that is $\frac{1}{6} \left(9 - 5 \sqrt{3} i \right)$.

So $ x = u+v = \frac{18}{6} = 3$
 
Last edited:
Random Variable said:
Cardano's formula states that $x = u+v$ is a solution to $x^{3} +px+q =0$ where $u = \Big(-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3} \right)^{3}} \Big)^{\frac{1}{3}}$

and $v = \Big(-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3} \right)^{3}} \Big)^{\frac{1}{3}}$.

But if I do it the other way,i.e,thinking that v has 6 values,won't I get 6(v+u) s or is 3 of them surely going to repeat

So for $x^{3}-13x+12 = 0$ we have $u = \Big(-6 + \sqrt{36 -\frac{2917}{27}} \Big)^{\frac{1}{3}} = \Big(-6 + \sqrt{-\frac{1225}{27}} \Big)^{\frac{1}{3}}$

$= \Big(-6 + \frac{35 i}{3 \sqrt{3}} \Big)^{\frac{1}{3}}$

which according to Wolfram Alpha equals $\Big( \frac{1}{216} \left( 9 + 5 \sqrt{3}i \right)^{3} \Big)^{\frac{1}{3}} = \frac{1}{6} \left(9 + 5 \sqrt{3} i \right)$

Is it the only possible cube root?

And $v$ is the complex conjugate of $u$, that is $\frac{1}{6} \left(9 - 5 \sqrt{3} i \right)$.

How can you be sure?

So $ x = u+v = \frac{18}{6} =
3$

What does wolframalpha say about the other cube roots?...and what about the other roots?please show me how you would those too...

Thanks a lot,but I am wondering what happened when I did it.Why is my discriminant not negative like yours?Why don't I get anyone of the desired roots?
 
Last edited:
It is useful to remember that, given the values of u and v... $$ u= \sqrt[3]{- \frac{q}{2} + \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}}\ v= \sqrt[3]{- \frac{q}{2} - \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}}\ (1)$$

... if $r_{0}= 1$, $r_{1} = e^{i\ \frac{2}{3}\ \pi}$ and $r_{2} = e^{i\ \frac{4}{3}\ \pi}$ are the 'cubic roots' of 1, then the roots of the equation $x^{3} + p\ x + q=0$ are given by...

$$x_{0}= r_{0}\ u + r_{0}\ v\ ;\ x_{1}= r_{1}\ u + r_{2}\ v\ ;\ x_{3}= r_{2}\ u + r_{1}\ v\ (2)$$

With (1), (2) and a bit of patience You can find that the three roots of $x^{3} - 13\ x + 12 = 0$ are $x_{0}=3$, $x_{1}= 1$ and $x_{2}=-4$... Kind regards $\chi$ $\sigma$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top