Cardinality of continuous real functions

Click For Summary
SUMMARY

The cardinality of the set of continuous real functions, denoted as $C(\mathbb{R}, \mathbb{R})$, is established to be greater than or equal to the cardinality of the real numbers, $Card(\mathbb{R}) \leq Card(C(\mathbb{R}, \mathbb{R}))$. The discussion highlights the necessity of demonstrating that $Card(C(\mathbb{R}, \mathbb{R})) \leq c$, where $c$ represents the cardinality of the continuum. A key approach involves showing that continuous functions are completely determined by their values at rational points, leading to the conclusion that $\mathbb{R}^{\mathbb{Q}} \sim \mathbb{R}$.

PREREQUISITES
  • Understanding of cardinality and its notation, particularly in set theory.
  • Familiarity with continuous functions and their properties in real analysis.
  • Knowledge of bijective functions and their role in establishing cardinality equivalences.
  • Concept of rational numbers and their significance in determining properties of continuous functions.
NEXT STEPS
  • Study the concept of cardinality in set theory, focusing on Cantor's theorem.
  • Learn about the properties of continuous functions and their behavior at rational points.
  • Explore bijective mappings and their applications in proving cardinality relationships.
  • Investigate the implications of $\mathbb{R}^{\mathbb{Q}} \sim \mathbb{R}$ in the context of real analysis.
USEFUL FOR

Mathematicians, particularly those specializing in set theory and real analysis, as well as students seeking to deepen their understanding of cardinality and continuous functions.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Wave)

Find the cardinal number of $C(\mathbb{R}, \mathbb{R})$ of the continuous real functions of a real variable and show that $C(\mathbb{R}, \mathbb{R})$ is not equinumerous with the set $\mathbb{R}^{\mathbb{R}}$ of all the real functions of a real variable. That's what I have tried: We have the following: Obvioulsy it holds that $Card(\mathbb{R}) \leq Card(C(\mathbb{R}, \mathbb{R})) \rightarrow c \leq Card(C(\mathbb{R}, \mathbb{R})) $. We will show that $Card(C(\mathbb{R}, \mathbb{R})) \leq c$.

In order to do this we pick the function $h: \mathbb{R}^2 \to \mathbb{R}$ so that $\langle n,m \rangle \mapsto \sum_{n=0}^k \frac{2n}{3^m}, k \in \mathbb{R}$ and want to show that it is bijective.It doesn't seem right to me... (Tmi) But it is entirely wrong?
 
Last edited:
Physics news on Phys.org
Let's start by fixing an obvious mistake. You wrote one thing in your post, and then you wrote the opposite thing. Perhaps you redefined a notation. Unless this is fixed, I don't see the reason to go forward.
 
Evgeny.Makarov said:
Let's start by fixing an obvious mistake. You wrote one thing in your post, and then you wrote the opposite thing. Perhaps you redefined a notation. Unless this is fixed, I don't see the reason to go forward.

I am sorry... I fixed the mistake... (Tmi)
 
evinda said:
That's what I have tried: We have the following:
Ah, so now you have tried nothing? Well, this violates rule 11 of the forum, and if this happens again, you will be issued a formal infraction and banned forever. Kidding. (Smile)
evinda said:
Obvioulsy it holds that $Card(\mathbb{R}) \leq Card(C(\mathbb{R}, \mathbb{R}))$
Yes, it is obvious, but still: why?

evinda said:
We will show that $Card(C(\mathbb{R}, \mathbb{R})) \leq c$.

In order to do this we pick the function $h: \mathbb{R}^2 \to \mathbb{R}$ so that $\langle n,m \rangle \mapsto \sum_{n=0}^k \frac{2n}{3^m}, k \in \mathbb{R}$ and want to show that it is bijective.
I am not familiar with this approach. Usually you show first that a continuous function is completely determined by its values in rational points.
 
Evgeny.Makarov said:
Ah, so now you have tried nothing? Well, this violates rule 11 of the forum, and if this happens again, you will be issued a formal infraction and banned forever.

(Sweating)

Evgeny.Makarov said:
Kidding. (Smile)

(Whew) (Tongueout)

Evgeny.Makarov said:
Yes, it is obvious, but still: why?

Could we consider for example a function $f: \mathbb{R} \to C(\mathbb{R}, \mathbb{R})$ such that $x \mapsto e^{x+y}$ where $y \in \mathbb{R}$ and show that it is injective?

Evgeny.Makarov said:
I am not familiar with this approach. Usually you show first that a continuous function is completely determined by its values in rational points.
So do we have to find an injective function that maps a continuous function to a real number? (Thinking)

That what I wrote doesn't make sense, right? (Tmi)
 
evinda said:
Could we consider for example a function $f: \mathbb{R} \to C(\mathbb{R}, \mathbb{R})$ such that $x \mapsto e^{x+y}$ where $y \in \mathbb{R}$ and show that it is injective?
That works. An even simpler example is a mapping $y\mapsto f(x)=y$ that returns constant functions.

evinda said:
So do we have to find an injective function that maps a continuous function to a real number?
Well, yes, but you need to go through rational numbers. Once you prove that a continuous function is determined by its values in rational points, you need to show that $\Bbb R^{\Bbb Q}\sim\Bbb R$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K