Cardinality of Sets: Solve Problems for Varsity Club

  • Context: MHB 
  • Thread starter Thread starter bergausstein
  • Start date Start date
  • Tags Tags
    Cardinality Sets
Click For Summary

Discussion Overview

The discussion revolves around solving problems related to the cardinality of sets, specifically in the context of a varsity club formed by members of different sports teams. Participants explore the application of set theory and the inclusion-exclusion principle to determine the total number of unique members in the club based on given conditions of overlap among team memberships.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a series of problems regarding the cardinality of a varsity club formed by three sports teams, providing initial solutions based on the assumption of no overlap.
  • In problem 1.a, a participant calculates the total members after accounting for overlap between two teams, arriving at a total of 61 members.
  • In problem 1.b, another participant adjusts the total to 57 members after considering additional overlaps between the teams.
  • In problem 1.c, participants express confusion about the phrase "two three letter men," leading to discussions on how to handle members who belong to all three teams and the implications for the total count.
  • One participant argues that the inclusion-exclusion principle should be applied differently, suggesting that the two members who belong to all three teams should be added back into the total rather than subtracted.
  • Another participant seeks clarification on whether the notation $n(F\cap B\cap T)$ indicates that two members belong to all three teams, expressing concern about double counting in their calculations.
  • Further clarification is provided regarding the counting process, emphasizing the need to account for overlaps correctly to avoid miscounting members.

Areas of Agreement / Disagreement

Participants generally agree on the solutions for problems 1, 1a, and 1b. However, there is disagreement and confusion regarding the approach to problem 1c, particularly in the application of the inclusion-exclusion principle and how to handle members who belong to multiple teams.

Contextual Notes

Participants express uncertainty about the interpretation of specific terms and the application of mathematical principles, indicating a need for further clarification on the counting methods used in set theory.

bergausstein
Messages
191
Reaction score
0
i have solved these problem just want to make sure I'm on the right track.

1. Say the football team F, the basketball team B, and the track team T, decide to form a varsity club V. how many members will V have if $n\left(F\right)\,=\,25,\,n\left(B\right)\,=\,12,\,n\left(T\right)\,=\,30$ and no person belongs to two teams?

Solution. $n\left(F\right)+n\left(B\right)+n\left(T\right)\,=\,67$ there's no possibility of overlap.

a. If in problem 1, $n\left(F\cap T\right)\,=\,6$ but there are no members of B who are in F or T then what is $n\left(V\right)$?

Solution. since there are six persons who belong to T and F i will subtract 6 from 67 which is 61.

b. If in problem 1.a $n\left(F\cap T\right)\,=\,6$, $n\left(T\cap B\right)\,=\,4$ and $n\left(F\cap B\right)\,=\,0$ then what is $n\left(V\right)$?

Solution. there are now 10 persons that belong to two teams i will subtract these number from 67 and I will have 57.

c. if in problem 1.b $n\left(F\cap T\right)\,=\,6$, $n\left(T\cap B\right)\,=\,4$ and $n\left(F\cap B\right)\,=\,3$, and there are 2 three letter men that is $n\left(F\cap B\cap T\right)\,=\,2$, then what is $n\left(V\right)$?

in part C i don't understand the part where it say "there are 2 three letter men".

but this is what i Tried. there are now 13 persons who belong to two teams and 2 persons who are member of the three teams. 67-15 = 54-2 = 52.

please check if my answers were correct.
 
Physics news on Phys.org
I agree with 1, 1a and 1b.

bergausstein said:
c. if in problem 1.b $n\left(F\cap T\right)\,=\,6$, $n\left(T\cap B\right)\,=\,4$ and $n\left(F\cap B\right)\,=\,3$, and there are 2 three letter men that is $n\left(F\cap B\cap T\right)\,=\,2$, then what is $n\left(V\right)$?

in part C i don't understand the part where it say "there are 2 three letter men".
As the problem says, "there are 2 three letter men" means $n\left(F\cap B\cap T\right)=2$.

bergausstein said:
but this is what i Tried. there are now 13 persons who belong to two teams and 2 persons who are member of the three teams. 67-15 = 54-2 = 52.
According to the inclusion–exclusion principle,\[|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|\]Therefore, you should add 2 instead of subtracting it.
 
does this ($n\left(F\cap B\cap T\right)$) mean that there are two persons who are member of the three teams? my thought process is like this: I don't want to count those 2 persons twice in the union that's why i subtracted it from the cardinality of union the three finite sets. like what i did with the 13 persons who are members of 2 two teams. please enlighten me further. thanks.
 
bergausstein said:
does this ($n\left(F\cap B\cap T\right)$) mean that there are two persons who are member of the three teams?
No, $n(F\cap B\cap T)=2$ means that.

bergausstein said:
my thought process is like this: I don't want to count those 2 persons twice in the union that's why i subtracted it from the cardinality of union the three finite sets. like what i did with the 13 persons who are members of 2 two teams.
When you added $|F|+|B|+|T|$, you counted elements of $F\cap B\cap T$ three times. Then, when you subtracted $|F\cap B|$, $|F\cap T|$ and $|B\cap T|$, you subtracted elements of $F\cap B\cap T$ also three times because those 2 elements occur in each of the three intersections. As a result, they still need to be counted once.
 
:) thanks you're such a help!
 

Similar threads

Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 62 ·
3
Replies
62
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
5K