MHB Cartesian Equation of the Plane Passing Through Two Vectors

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Cartesian Plane
Guest2
Messages
192
Reaction score
0
Could someone please help with me with part $(b)$? By "the other set of vectors" they mean $R$, and the linear combination is

$(1,2,9) = -3(1,0,-1)+2(2,1,3)$.​

https://i.imgsafe.org/b80212f.png
 
Physics news on Phys.org
Guest said:
Could someone please help with me with part $(b)$? By "the other set of vectors" they mean $R$, and the linear combination is

$(1,2,9) = -3(1,0,-1)+2(2,1,3)$.​

Hi Guest,

If we write the 3rd vector as a linear combination of the first two, we have:
$$(1,2,9) = a(1,0,-1)+b(2,1,3)$$
Can you solve it? (Wondering)
 
I like Serena said:
Hi Guest,

If we write the 3rd vector as a linear combination of the first two, we have:
$$(1,2,9) = a(1,0,-1)+b(2,1,3)$$
Can you solve it? (Wondering)
So $(1,2,9) = (a, 0,-a)+(2b, b, 3b) = (a+2b, b, 3b-a) \implies b = 2 \implies a = -3. $
 
Woah, I've solved it I think (Happy)

Since $v_1 = (1,0,-1)$ and $v_2 = (2,1,3)$ span the plane, we can write any point in the plane as:

$\begin{align*}
\begin{pmatrix}x\\y\\z\end{pmatrix}=tv_1+rv_2=t\begin{pmatrix}1\\0\\-1\end{pmatrix}+r\begin{pmatrix}2\\1\\3\end{pmatrix}
=\begin{pmatrix}1&2\\0&1\\-1&3\end{pmatrix}\begin{pmatrix} t \\ r\end{pmatrix}
\end{align*}$, call this (1). Now, row reducing:

$\begin{pmatrix}1&2&|&x\\0&1&|&y\\-1&3&|&z\end{pmatrix} \to \begin{pmatrix}1&2&|&x\\0&1&|&y\\0&5&|&x+z\end{pmatrix} \to \begin{pmatrix}1&0&|&x-2y\\0&1&|&y\\0&5&|&x+z\end{pmatrix} \to \begin{pmatrix}1&0&|&x-2y\\0&1&|&y\\0&0&|&x-5y+z\end{pmatrix}$

We find that (1) has a solution if and only if $x-5y+z = 0$, and this is the equation for the plane $\Pi$.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top