Jhenrique
- 676
- 4
The Cauchy's differintegral formula is: \frac{d^n}{dz^n}f(z_0)=\frac{n!}{2\pi i!}\oint_{\gamma}\frac{f(z)}{(z-z_0)^{n+1}}dz But this formula is valid if the derivative is wrt ##\bar{z}## ? \frac{d^n}{d\bar{z}^n}f(z_0) And if the integral is wrt ##\bar{z}## is valid too? \frac{n!}{2\pi i!}\oint_{\gamma}\frac{f(z)}{(z-z_0)^{n+1}}d\bar{z}