- #1
Jhenrique
- 685
- 4
The Cauchy's differintegral formula is: [tex]\frac{d^n}{dz^n}f(z_0)=\frac{n!}{2\pi i!}\oint_{\gamma}\frac{f(z)}{(z-z_0)^{n+1}}dz[/tex] But this formula is valid if the derivative is wrt ##\bar{z}## ? [tex]\frac{d^n}{d\bar{z}^n}f(z_0)[/tex] And if the integral is wrt ##\bar{z}## is valid too? [tex]\frac{n!}{2\pi i!}\oint_{\gamma}\frac{f(z)}{(z-z_0)^{n+1}}d\bar{z}[/tex]