MHB Challenge Problem #9 [Olinguito]

  • Thread starter Thread starter Olinguito
  • Start date Start date
  • Tags Tags
    Challenge
Olinguito
Messages
239
Reaction score
0
Let $S_n$ be the group of all permutations of the set $\{1,\ldots,n\}$. Determine whether the following assertions are true or false.

1. For each $\pi\in S_n$,
$$\sum_{i=1}^n\,(\pi(i)-i)\ =\ 0.$$

2. If
$$\sigma_\pi\ =\ \sum_{i=1}^n\,\left|\pi(i)-i\right|$$
for each $\pi\in S_n$, then $\sigma_\pi$ is an even number.

Bonus challenge: Find $\displaystyle\max_{\pi\in S_n}\,\sigma_\pi$.
 
Mathematics news on Phys.org
I have solved the first part of the problem.

$$\sum_{i=1}^n\,(\pi(i)-i))\ =\ 0$$
follows from the fact that
$$\sum_{i=1}^n\,\pi(i)\ =\ \sum_{i=1}^n\,i$$
(the terms of the LHS sum are precisely those of the RHS sum in a different order).
 
[sp]For the second part, notice that by the first part, the sum of the negative terms in $\sum(\pi(i) - i)$ is the negative of the sum of the positive terms. So when you replace the negative terms by their absolute values, the resulting sum is twice the sum of the positive terms. In other words, it must be an even number.
[/sp]
 
Olinguito said:
Bonus challenge: Find $\displaystyle\max_{\pi\in S_n}\,\sigma_\pi$.
[sp]That part looks harder. After experimenting with small values of $n$, I believe that $$\max_{\pi\in S_n}\sigma_\pi = \bigl\lfloor\tfrac{n^2}2\bigr\rfloor$$. But I don't have a proof of that.
[/sp]
 
Opalg said:
[sp]That part looks harder. After experimenting with small values of $n$, I believe that $$\max_{\pi\in S_n}\sigma_\pi = \bigl\lfloor\tfrac{n^2}2\bigr\rfloor$$. But I don't have a proof of that.
[/sp]
It would be $\dfrac{n^2}2$ if $n$ is even and $\dfrac{n^2-1}2$ if $n$ is odd – a simple induction clinches the proof.

Thanks for helping me with the challenge! (Clapping)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
14
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
Back
Top