MHB Challenge problem Find k if x=k is tangent to the curve y=x+√(2).e^[(x+y)/√(2)]

Olinguito
Messages
239
Reaction score
0
If the line $x=k$ is tangent to the curve
$$\large y\:=\:x+\sqrt2\,e^{\frac{x+y}{\sqrt2}}$$
what is the value of $k$?
 
Mathematics news on Phys.org
Olinguito said:
If the line $x=k$ is tangent to the curve
$$\large y\:=\:x+\sqrt2\,e^{\frac{x+y}{\sqrt2}}$$
what is the value of $k$?


Hi Olinguito!

Here is my attempt.
Take the total derivative:
$$dy\:=\:dx+\sqrt2\,e^{\frac{x+y}{\sqrt2}}\cdot \frac{dx+dy}{\sqrt2}$$
Substitute $dx=0$ to find where we have a vertical tangent:
$$ dy=\sqrt2\,e^{\frac{x+y}{\sqrt2}}\cdot \frac{dy}{\sqrt2}=dy\cdot e^{\frac{x+y}{\sqrt2}} \quad\Rightarrow\quad
y=-x$$
Substitute in the original equation:
$$-x\:=\:x+\sqrt2\,e^{\frac{x+(-x)}{\sqrt2}} \quad\Rightarrow\quad x=-\frac 12\sqrt 2$$
Thus:
$$k=-\frac 12\sqrt 2$$
 
Great work! (Clapping) I have a different solution that does not involve calculus – again I’ll wait and see if anyone else wants to have a go.
 
My solution.

A rotation of 45° clockwise about the origin sends the point $(x,y)$ to the point $(X,Y)$, where
$$\begin{pmatrix}X \\ Y\end{pmatrix}\ =\ \begin{pmatrix}\frac1{\sqrt2} & \frac1{\sqrt2} \\ -\frac1{\sqrt2} & \frac1{\sqrt2}\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\ =\ \begin{pmatrix}\frac{x+y}{\sqrt2} \\ \frac{-x+y}{\sqrt2}\end{pmatrix}.$$
Thus the rotation takes the curve
$$\frac{-x+y}{\sqrt2}\ =\ e^{\frac{x+y}{\sqrt2}}$$
to the curve
$$Y\ =\ e^X.$$
The 45° tangent to the latter curve is the line $Y=X+1$. Rotating this 45° counterclockwise about the origin gives
$$\frac{-x+y}{\sqrt2}\ =\ \frac{x+y}{\sqrt2}\,+\,1$$
$\implies\ x\ =\ -\dfrac1{\sqrt2}$.
 
Olinguito said:
If the line $x=k$ is tangent to the curve
$$\large y\:=\:x+\sqrt2\,e^{\frac{x+y}{\sqrt2}}$$
what is the value of $k$?


Differentiate both sides w.r.t. y and we get:$$\frac{dy}{dy}= \frac{dx}{dy}+\sqrt2\,e^{\frac{x+y}{\sqrt2}}\frac{1}{\sqrt 2}(\frac{dx}{dy}+\frac{dy}{dy})$$

And now since x=k is per/lar to the x-axis and tangent to the curve we must have : dx/dy =0 and the above formula becomes:$$1=\,e^{\frac{x+y}{\sqrt2}}\Longrightarrow \frac{x+y}{\sqrt 2}=0\Longrightarrow x=-y$$ e.t.c,e.t.c
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top