MHB Challenge problem Find k if x=k is tangent to the curve y=x+√(2).e^[(x+y)/√(2)]

Click For Summary
The discussion revolves around finding the value of k for which the vertical line x=k is tangent to the curve defined by the equation y=x+√2e^[(x+y)/√2]. Participants share their attempts and solutions, with one member highlighting a non-calculus approach. The focus remains on determining the specific value of k that satisfies the tangency condition. The problem invites various methods of solution, emphasizing the challenge of tangency in relation to the given curve. Ultimately, the goal is to establish the correct value of k.
Olinguito
Messages
239
Reaction score
0
If the line $x=k$ is tangent to the curve
$$\large y\:=\:x+\sqrt2\,e^{\frac{x+y}{\sqrt2}}$$
what is the value of $k$?
 
Mathematics news on Phys.org
Olinguito said:
If the line $x=k$ is tangent to the curve
$$\large y\:=\:x+\sqrt2\,e^{\frac{x+y}{\sqrt2}}$$
what is the value of $k$?


Hi Olinguito!

Here is my attempt.
Take the total derivative:
$$dy\:=\:dx+\sqrt2\,e^{\frac{x+y}{\sqrt2}}\cdot \frac{dx+dy}{\sqrt2}$$
Substitute $dx=0$ to find where we have a vertical tangent:
$$ dy=\sqrt2\,e^{\frac{x+y}{\sqrt2}}\cdot \frac{dy}{\sqrt2}=dy\cdot e^{\frac{x+y}{\sqrt2}} \quad\Rightarrow\quad
y=-x$$
Substitute in the original equation:
$$-x\:=\:x+\sqrt2\,e^{\frac{x+(-x)}{\sqrt2}} \quad\Rightarrow\quad x=-\frac 12\sqrt 2$$
Thus:
$$k=-\frac 12\sqrt 2$$
 
Great work! (Clapping) I have a different solution that does not involve calculus – again I’ll wait and see if anyone else wants to have a go.
 
My solution.

A rotation of 45° clockwise about the origin sends the point $(x,y)$ to the point $(X,Y)$, where
$$\begin{pmatrix}X \\ Y\end{pmatrix}\ =\ \begin{pmatrix}\frac1{\sqrt2} & \frac1{\sqrt2} \\ -\frac1{\sqrt2} & \frac1{\sqrt2}\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix}\ =\ \begin{pmatrix}\frac{x+y}{\sqrt2} \\ \frac{-x+y}{\sqrt2}\end{pmatrix}.$$
Thus the rotation takes the curve
$$\frac{-x+y}{\sqrt2}\ =\ e^{\frac{x+y}{\sqrt2}}$$
to the curve
$$Y\ =\ e^X.$$
The 45° tangent to the latter curve is the line $Y=X+1$. Rotating this 45° counterclockwise about the origin gives
$$\frac{-x+y}{\sqrt2}\ =\ \frac{x+y}{\sqrt2}\,+\,1$$
$\implies\ x\ =\ -\dfrac1{\sqrt2}$.
 
Olinguito said:
If the line $x=k$ is tangent to the curve
$$\large y\:=\:x+\sqrt2\,e^{\frac{x+y}{\sqrt2}}$$
what is the value of $k$?


Differentiate both sides w.r.t. y and we get:$$\frac{dy}{dy}= \frac{dx}{dy}+\sqrt2\,e^{\frac{x+y}{\sqrt2}}\frac{1}{\sqrt 2}(\frac{dx}{dy}+\frac{dy}{dy})$$

And now since x=k is per/lar to the x-axis and tangent to the curve we must have : dx/dy =0 and the above formula becomes:$$1=\,e^{\frac{x+y}{\sqrt2}}\Longrightarrow \frac{x+y}{\sqrt 2}=0\Longrightarrow x=-y$$ e.t.c,e.t.c
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K