Chalnoth
Science Advisor
- 6,197
- 449
Nope, because the explosion in those cases arises from asymmetric instabilities, which cannot be modeled in one dimension.twofish-quant said:In that case it's either a hydro effect, asphericity effect, or a radiation effect. Having a three-d simulation that explodes when a 2-d doesn't, isn't useful. You should be able to run the 3-d simulation and explain why 3-d causes a difference and then work that back into a 1-d code.
Basically, from the simulations I've seen, what happens is that small oscillations lead to oscillation of the shock front along one axis (e.g. up/down). Those oscillations then grow until the shock front is destabilized and the supernova explodes.twofish-quant said:I need to review the literature on type II's over the last year to see if someone has come up with something new, but off the top of my head I don't see how this is going to work. If you have instabilities that affect the shock itself, then you are hosed because you don't have nearly the resolution to see the shock itself. If you have the instabilities develop behind the shock then you have the problem that I mentioned earlier.
From what I can tell, this is a big reason why we still don't know what's causing the explosions.twofish-quant said:One big problem with full three-d simulations is that if you have very detailed hydrodynamics, then most of the time they are using much less detailed neutrino physics, and if you use less detailed neutrino physics, it's not obvious that the explosions that you are getting are the result of having a crude neutrino algorithm that reduce losses. If you are using 3-d hydro but 1-d neutrino physics, it's pretty easy to come up with a calculation that is inconsistent.