B Relativistic Energy: Change of Consts. of Integration

Click For Summary
The discussion centers on a video explaining the derivation of relativistic kinetic energy, specifically questioning the change of integration constants from 0 to pv. A participant suggests that this change appears to be a mistake and should actually be v, noting a correction made in the video at the 3:00 mark. An alternative derivation is provided, detailing the use of hyperbolic functions and integrals related to relativistic momentum and force. The conversation emphasizes the importance of clarity in the derivation process and the need for accurate representation of constants. Overall, the discussion highlights a potential error in the video and offers a more comprehensive approach to the derivation.
SamRoss
Gold Member
Messages
256
Reaction score
36
In this super short video of the derivation of the relativistic kinetic energy, , I'm just stuck on one thing. Around 1:00 minute in, the constants of integration change from 0 to pv when the integration changes from dx to dv. Where does the pv come from? Thanks!
 
Physics news on Phys.org
SamRoss said:
In this super short video of the derivation of the relativistic kinetic energy, , I'm just stuck on one thing. Around 1:00 minute in, the constants of integration change from 0 to pv when the integration changes from dx to dv. Where does the pv come from? Thanks!


Looks like a mistake to me. Should be v (he annotates a correction to that effect at the 3:00 mark, but as far as I can tell it should come sooner).
 
Also, try this derivation out for size. Note: an overdot indicates a derivative taken with respect to ##ct## (not ##t##).

##\vec{\beta} = \vec v / c##
##\gamma = (1 - \beta^2)^{-1/2}##
##\phi = \tanh^{-1}{\beta}## (giving ##\cosh{\phi} = \gamma## and ##\sinh{\phi} = \gamma \beta## by hyperbolic identities)
##\vec p = \gamma m \vec v##
##\vec f = \dot{\vec p} c = \dfrac{d\vec p c}{d(ct)} = mc^2 \dfrac{d}{d(ct)} (\gamma \vec{\beta}) = mc^2 \dfrac{d}{d(ct)} (\hat{\beta} \sinh{\phi})##.

Now do the work–energy thing:

##\begin{split}
\int^{\vec r_f}_{\vec r_i} \vec f \cdot d \vec r &= mc^2 \int^{\vec r_f}_{\vec r_i} \dfrac{d}{d(ct)} (\hat{\beta} \sinh{\phi}) \cdot d \vec r \\[3pt]
&= mc^2 \int^{\vec r_f}_{\vec r_i} \left( \hat{\beta} \dot{\phi} \cosh{\phi} + \dot{\hat{\beta}} \sinh{\phi} \right) \cdot d \vec r \\[3pt]
&= mc^2 \int^{\vec r_f}_{\vec r_i} \left( \hat{\beta} \cdot d \vec r \right) \cosh{\phi} \, \dfrac{d \phi}{d (ct)}
\end{split}##

(because ##d \vec r## and ##\dot{\hat{\beta}}## are orthogonal). Then change variable using ##d \vec r / d(ct) = \vec \beta = \hat{\beta} \tanh{\phi}##:

##\begin{split}
\int^{\vec r_f}_{\vec r_i} \vec f \cdot d \vec r &= mc^2 \int^{\phi_f}_{\phi_i} \left( \hat{\beta} \cdot \hat{\beta} \right) \tanh{\phi} \, \cosh{\phi} \; d \phi \\[3pt]
&=mc^2 \int^{\phi_f}_{\phi_i} \sinh{\phi} \; d \phi \\[3pt]
&= mc^2 \, \Delta \cosh{\phi} \\[3pt]
&= mc^2 \Delta \gamma ,
\end{split}##

etc.
 
SiennaTheGr8 said:
Looks like a mistake to me. Should be v (he annotates a correction to that effect at the 3:00 mark, but as far as I can tell it should come sooner).
Thanks. That's a load off my mind. And thanks for the alternate derivation as well.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
38
Views
963
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
Replies
21
Views
3K