Change of variables heat equation

Click For Summary
SUMMARY

The discussion focuses on the heat equation represented by the partial differential equation \(\alpha^2T_{xx} = T_t + \beta(T - T_0)\), where \(\beta\) is a constant and \(T_0\) is the ambient temperature. The substitution \(T(x, t) = T_0 + U(x, t)e^{-\beta t}\) simplifies the equation to \(\alpha^2U_{xx} = U_t\) with modified initial and boundary conditions. Participants identified issues with derivative calculations, specifically the need to apply the product rule correctly when differentiating the substitution.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with the heat equation and its boundary conditions
  • Knowledge of the product rule in calculus
  • Experience with variable substitution techniques in differential equations
NEXT STEPS
  • Review the derivation of the heat equation and its solutions
  • Study the application of the product rule in differentiation
  • Learn about boundary value problems in PDEs
  • Explore numerical methods for solving the heat equation
USEFUL FOR

Mathematicians, physicists, and engineering students focusing on heat transfer, as well as anyone working with partial differential equations and their applications in real-world scenarios.

Dustinsfl
Messages
2,217
Reaction score
5
\[
\alpha^2T_{xx} = T_t + \beta(T - T_0)
\]
where \(\beta\) is a constant and \(T_0\) is the temperature of the surrounding medium. The initial temperature distribution is \(T(x, 0) = f(x)\) and the ends \(x = 0\) and \(x = \ell\) are maintained at \(T_1\) and \(T_2\) when \(t > 0\).

Show that the substitution \(T(x, t) = T_0 + U(x, t)e^{-\beta t}\) reduces the problem to the following one:
\[
\alpha^2U_{xx} = U_t
\]
with new initial conditions and boundary conditions for \(U\).

With that substitution, I obtain:
\begin{align}
\alpha^2U_{xx} &= -\beta(U_t - T_0U)\\
\alpha_1^2U_{xx} &= U_t - T_0U
\end{align}
What is going wrong?
 
Physics news on Phys.org
Re: Change of varibles heat equation

dwsmith said:
\[
\alpha^2T_{xx} = T_t + \beta(T - T_0)
\]
where \(\beta\) is a constant and \(T_0\) is the temperature of the surrounding medium. The initial temperature distribution is \(T(x, 0) = f(x)\) and the ends \(x = 0\) and \(x = \ell\) are maintained at \(T_1\) and \(T_2\) when \(t > 0\).

Show that the substitution \(T(x, t) = T_0 + U(x, t)e^{-\beta t}\) reduces the problem to the following one:
\[
\alpha^2U_{xx} = U_t
\]
with new initial conditions and boundary conditions for \(U\).

With that substitution, I obtain:
\begin{align}
\alpha^2U_{xx} &= -\beta(U_t - T_0U)\\
\alpha_1^2U_{xx} &= U_t - T_0U
\end{align}
What is going wrong?
I'm not quite sure of the problem here. For example,
T = T_0 + U(x, t)e^{- \beta t} \implies T_t = U_t e^{- \beta t} - \beta U e^{- \beta t}

Do the same for U_x and U_xx, then sub into the original equation. There are a ton of cancellations which gives you the final answer.

Are you having problems with the derivatives or is it something else?

-Dan
 
Re: Change of varibles heat equation

topsquark said:
I'm not quite sure of the problem here. For example,
T = T_0 + U(x, t)e^{- \beta t} \implies T_t = U_t e^{- \beta t} - \beta U e^{- \beta t}

Do the same for U_x and U_xx, then sub into the original equation. There are a ton of cancellations which gives you the final answer.

Are you having problems with the derivatives or is it something else?

-Dan

I forgot to use the product rule
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
2
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K