brotherbobby
- 749
- 169
- Homework Statement
- Given ##\tan\dfrac{\theta}{2}=\sqrt{\dfrac{1-e}{1+e}}\tan\dfrac{\phi}{2}##, prove ##\boxed{\cos\phi=\dfrac{\cos\theta-e}{1-e\cos\theta}}##
- Relevant Equations
- (1) Componendo and dividendo : If ##\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow \dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}##.
(2) ##\cos x=\dfrac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}##
Problem Statement : The statement of the problem again. If ##\tan\dfrac{\theta}{2}=\sqrt{\dfrac{1-e}{1+e}}\tan\dfrac{\phi}{2}##, prove ##\boldsymbol{\cos\phi=\dfrac{\cos\theta-e}{1-e\cos\theta}}##.
Attempt : Transposing and squaring what's given, we get ##\tan^2\dfrac{\phi}{2}=\dfrac{1+e}{1-e}\tan^2\dfrac{\theta}{2}##.
Upon applying the componendo and dividendo to both sides of the equation, ##\small{\dfrac{1-\tan^2\phi/2}{1+\tan^2\phi/2}=\dfrac{1-e-(1+e)\tan^2\theta/2}{1-e+(1+e)\tan^2\theta/2}\Rightarrow \cos\phi=\dfrac{1-\tan^2\theta/2-e(1+\tan^2\theta/2)}{1+\tan^2\theta/2-e(1-\tan^2\theta/2)}}{\large{\color{red}{\overset{\mathbf ?}{\mathbf \Rightarrow}}}} \cos\phi=\dfrac{\cos\theta-e}{1-e\cos\theta}##.
Request : As you can see on the right side of the above calculation, I cannot show how my calculated value ##\cos\phi=\dfrac{1-\tan^2\theta/2-e(1+\tan^2\theta/2)}{1+\tan^2\theta/2-e(1-\tan^2\theta/2)}=\dfrac{\cos\theta-e}{1-e\cos\theta}?##
I cannot show how the second expression reduces to the third, which is what's required.
A hint would be welcome.
Attempt : Transposing and squaring what's given, we get ##\tan^2\dfrac{\phi}{2}=\dfrac{1+e}{1-e}\tan^2\dfrac{\theta}{2}##.
Upon applying the componendo and dividendo to both sides of the equation, ##\small{\dfrac{1-\tan^2\phi/2}{1+\tan^2\phi/2}=\dfrac{1-e-(1+e)\tan^2\theta/2}{1-e+(1+e)\tan^2\theta/2}\Rightarrow \cos\phi=\dfrac{1-\tan^2\theta/2-e(1+\tan^2\theta/2)}{1+\tan^2\theta/2-e(1-\tan^2\theta/2)}}{\large{\color{red}{\overset{\mathbf ?}{\mathbf \Rightarrow}}}} \cos\phi=\dfrac{\cos\theta-e}{1-e\cos\theta}##.
Request : As you can see on the right side of the above calculation, I cannot show how my calculated value ##\cos\phi=\dfrac{1-\tan^2\theta/2-e(1+\tan^2\theta/2)}{1+\tan^2\theta/2-e(1-\tan^2\theta/2)}=\dfrac{\cos\theta-e}{1-e\cos\theta}?##
I cannot show how the second expression reduces to the third, which is what's required.
A hint would be welcome.