(adsbygoogle = window.adsbygoogle || []).push({}); The problem statement, all variables and given/known data

Recall that a subgroup N of a group G is called characteristic if f(N) = N for all automorphisms f of G. If N is a characteristic subgroup of G, show that N is a normal subgroup of G.

The attempt at a solution

I must show that if g is in G, then gN = Ng. Let n be in N. Since N is characteristic, there are automorphisms f and f' of G and elements a and a' of G such that n = f(a) = f'(a'). There are also elements b and b' in G such that g = f(b) = f'(b') so that gn = f(b)f(a) = f(ba) = f'(b')f(a) = f(b)f'(a') = f'(b')f'(a') = f'(b'a'). This is all I can think of and I don't see how this allows me to prove that N is normal. Am I missing something?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Characteristic Subgroup is Normal

**Physics Forums | Science Articles, Homework Help, Discussion**