Chebyshev's Method: Recursive Algorithm & Polynomial Form

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Method
Click For Summary

Discussion Overview

The discussion revolves around Chebyshev's method, specifically focusing on a recursive algorithm for computing the $n$th multiple angle formula for the cosine function. Participants explore the derivation of the recursive algorithm, closed polynomial forms, and integrals involving Chebyshev polynomials.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant defines Chebyshev's method and presents the recursive algorithm for computing $T_{n}$.
  • Another participant derives the recursive formula using trigonometric identities and expresses it in terms of $T_{n}$ and $T_{n-1}$.
  • Integrals of $T_{n}$ over the interval from -1 to 1 are computed, with results depending on whether $n$ is odd or even.
  • A participant discusses the integral of the product of two Chebyshev polynomials and provides results based on the equality of indices.
  • One participant expresses a misunderstanding regarding the nature of the recurrence relation and provides a characteristic polynomial approach to find a general solution for $T_{n}$.
  • Another participant acknowledges the clarity of a previous post and shares their own solutions to the posed problems.

Areas of Agreement / Disagreement

Participants present various approaches and solutions to the problems posed, but there is no consensus on the correctness of each method or result. Multiple competing views and interpretations of the integrals and polynomial forms remain present throughout the discussion.

Contextual Notes

Some participants express uncertainty regarding the derivation steps and the implications of their results, particularly in relation to the conditions under which certain integrals yield zero or non-zero values.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Chebyshev's method is a recursive algorithm for computing the $n$th multiple angle formula for the cosine function. If we define:

$$T_{n}\equiv \cos(n\theta)$$

then the algorithm is given as:

$$T_{n+1}=2xT_{n}-T_{n-1}$$

where:

$$x=\cos(\theta)$$

a) Using trigonometric identities (or otherwise), derive the recursive algorithm.

b) Find a closed polynomial form for $T_{n}$.

c) Compute $$\int_{-1}^1 T_n\,dx$$

d) Compute $$\int_{-1}^1 \frac{T_nT_m}{\sqrt{1-x^2}}\,dx$$
 
Physics news on Phys.org
a)

$ \displaystyle T_{n+1}(x) = T_{n+1}(\cos \theta) = \cos \Big((n+1) \theta \Big) = \cos (n \theta) \cos (\theta) - \sin(n \theta) \sin(\theta)$

$ \displaystyle T_{n-1}(x) = T_{n-1}(\cos \theta) = \cos \Big((n-1) \theta \Big) = \cos (n \theta) \cos (\theta) + \sin(n \theta) \sin(\theta) $So $ \displaystyle T_{n+1}(\cos \theta) + T_{n-1} \cos(\theta) = 2 \cos(n \theta) \cos (\theta) = 2 \cos \theta \ T_{n}(\cos \theta) $Or $ \displaystyle T_{n+1}(x) = 2x T_{n}(x) - T_{n-1}(x) $
b)

$ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx $

Let $ x = \cos \theta $

$ \displaystyle = \int_{0}^{\pi} T_{n}(\cos \theta) \sin \theta \ d \theta = \int_{0}^{\pi} \cos(n \theta) \sin \theta \ d \theta = \frac{1}{2} \int_{0}^{\pi} \Big( \sin (n+1) \theta - \sin(n-1) \theta \Big) \ d \theta$

$ \displaystyle = - \frac{1}{2(n+1)} \Big( (-1)^{n+1}- 1 \Big) + \frac{1}{2(n-1)} \Big((-1)^{n-1} -1 \big) $If $n$ is odd, $ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx = 0$

If $n$ is even $ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx = \frac{1}{n+1} - \frac{1}{n-1} = -\frac{2}{n^{2}-1}$
 
Last edited:
d)$ \displaystyle \int_{-1}^1 \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}}\,dx $

Let $x = \cos \theta $

$ \displaystyle = \int_{0}^{\pi} T_n( \cos \theta)T_m(\cos \theta ) \ d \theta = \int_{0}^{\pi} \cos( n \theta) \cos( m \theta) \ d \theta = \frac{1}{2} \int_{0}^{\pi} \Big(\cos(n+m) \theta + \cos (n-m) \Big) \ d \theta $If $n \ne m$, $ \displaystyle \int_{-1}^1 \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}}\,dx = \frac{1}{2(n+m)} \Big(\sin(n+m) \pi - 0 \Big) + \frac{1}{2(n-m)} \Big( \sin(n-m) \pi - 0 \Big) = 0 $If $n = m$, $ \displaystyle \int_{-1}^1 \frac{T^{2}_n(x)}{\sqrt{1-x^2}}\,dx = \frac{1}{4n} \Big(\sin(2n \pi) - 0 \Big) + \frac{\pi}{2} = \frac{\pi}{2} $
 
Last edited:
I skipped (b) because I initially thought we were dealing with a recurrence relation with a variable coefficient. (Doh)$ \displaystyle T_{n+1} - 2xT_{n} - T_{n-1} = 0 $ has the associated characteristic polynomial $r^{2}-2xr - 1 = 0$

which has roots $ \displaystyle r = x \pm \sqrt{x^{2}-1} $.So the general solution is $T_{n} = c_{1} \Big(x + \sqrt{x^{2}-1} \Big)^{n} + c_{2} \Big(x - \sqrt{x^{2}-1} \Big)^{n} $.$ \displaystyle T_{0} = 1 = c_{1}+c_{2}$

$\displaystyle T_{1} = x = c_{1} \Big(x + \sqrt{x^{2}-1} \Big) + c_{2} \Big(x - \sqrt{x^{2}-1} \Big) $So just by inspection, $\displaystyle c_{1}=c_{2} = \frac{1}{2} $

And $ \displaystyle T_{n} = \frac{\Big(x + \sqrt{x^{2}-1} \Big)^{n} + \Big(x - \sqrt{x^{2}-1} \Big)^{n}}{2} $ which is evidently a polynomial in $x$ for all values of $n$
 
Last edited:
Bravo, Random Variable! (Clapping)

Thank you for taking the time to post such lucid explanations. (Yes)

Here are my solutions:

a) Using trigonometric identities (or otherwise), derive the recursive algorithm.

We may begin with the identity:

$$\cos((n+1)\theta)=\cos((n+1)\theta)$$

Add $$0=\cos((n-1)\theta)-\cos((n-1)\theta)$$ to the right side:

$$\cos((n+1)\theta)=\cos((n+1)\theta)+\cos((n-1)\theta)-\cos((n-1)\theta)$$

To the first two terms on the right, apply the following sum to product identity:

$$\cos(\alpha)+\cos(\beta)=2\cos\left(\frac{\alpha-\beta}{2} \right)\cos\left(\frac{\alpha+\beta}{2} \right)$$

and we have:

$$\cos((n+1)\theta)=2\cos(\theta)\cos(n\theta)-\cos((n-1)\theta)$$

And so we may write:

$$T_{n+1}=2xT_{n}-T_{n-1}$$

b) Find a closed polynomial form for $T_{n}$.

This is a homogeneous recurrence whose associated auxiliary equation is:

$$r^2-2xr+1=0$$

Application of the quadratic formula yields:

$$r=x\pm\sqrt{x^2-1}$$

Thus, the solution is of the form:

$$T_n(x)=c_1\left(x-\sqrt{x^2-1} \right)^n+c_2\left(x+\sqrt{x^2-1} \right)^n$$

Use initial conditions to determine constants:

$$T_0=c_1+c_2=1$$

$$T_1=c_1\left(x-\sqrt{x^2-1} \right)+c_2\left(x+\sqrt{x^2-1} \right)=x$$

Substituting from the first into the second:

$$c_1\left(x-\sqrt{x^2-1} \right)+\left(1-c_1 \right)\left(x+\sqrt{x^2-1} \right)=x$$

$$c_1x-c_1\sqrt{x^2-1}+x+\sqrt{x^2-1}-c_1x-c_1\sqrt{x^2-1}=x$$

$$-2c_1\sqrt{x^2-1}+\sqrt{x^2-1}=0$$

$$c_1=\frac{1}{2}\,\therefore\,c_2=\frac{1}{2}$$

Thus, the closed form for $T_n(x)$ is:

$$T_n(x)=\frac{1}{2}\left(\left(x-\sqrt{x^2-1} \right)^n+\left(x+\sqrt{x^2-1} \right)^n \right)$$

Using the binomial theorem, we may state:

$$T_n(x)=\frac{1}{2}\left(\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(-\sqrt{x^2-1} \right)^k \right)+\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right) \right)$$

$$T_n(x)=\frac{1}{2}\left(\sum_{k=0}^n\left({n \choose k}x^{n-k}(-1)^k\left(\sqrt{x^2-1} \right)^k \right)+\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right) \right)$$

$$T_n(x)=\frac{1}{2}\sum_{k=0}^n\left(\left(1+(-1)^k \right){n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right)$$

$$T_n(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor}\left({n \choose 2k}x^{n-2k}\left(x^2-1 \right)^k \right)$$

c) Compute $$\int_{-1}^1 T_n\,dx$$

From the recurrence relation, we may compute:

$$T_n(x)=\frac{1}{2}\left(\frac{1}{n+1}\cdot\frac{d}{dx}T_{n+1}(x)-\frac{1}{n-1}\cdot\frac{d}{dx}T_{n-1}(x) \right)$$

$$\int_{-1}^1 T_n(x)\,dx=\frac{1}{2}\left[\frac{T_{n+1}(x)}{n+1}-\frac{T_{n-1}(x)}{n-1} \right]_{-1}^1$$

From the definition, we see that $T_n(1)=1$ and $T_n(-1)=1\text{ n even or }-1\text{ n odd}$, thus:

For even $n$:

$$\int_{-1}^1 T_n(x)\,dx=\frac{1}{n+1}-\frac{1}{n-1}=\frac{2}{1-n^2}$$

For odd $n$:

$$\int_{-1}^1 T_n(x)\,dx=0$$

d) Compute $$\int_{-1}^1 \frac{T_nT_m}{\sqrt{1-x^2}}\,dx$$

$$Let x=\cos(\theta)\,\therefore\,dx=-\sin(\theta)\,d\theta$$

$$I=\int_{0}^{\pi} \cos(n\theta)\cos(m\theta)\,d\theta$$

For $n=m=0$:

$$I=\int_{0}^{\pi}\,d\theta=\pi$$

For $n=m\ne0$:

$$I=\int_{0}^{\pi} \cos^2(n\theta)\,d\theta$$

Let $$u=n\theta\,\therefore\,du=n\,d\theta$$

$$I=\frac{1}{n}\int_{0}^{n\pi} \cos^2(u)\,du=\frac{1}{2n}\int_{0}^{n\pi}\cos(2u)+1\,du=$$

$$\frac{1}{2n}\left[\frac{1}{2}\sin(2u)+u \right]_0^{n\pi}=\frac{1}{2n}\left(0+n\pi-0-0 \right)=\frac{\pi}{2}$$

For $n\ne m$:

$$I=\int_{0}^{\pi} \cos(n\theta)\cos(m\theta)\,d\theta=$$

$$\left[\frac{m\sin(m\theta)\cos(n\theta)-n\cos(m\theta)\sin(n\theta)}{m^2-n^2} \right]_{0}^{\pi}=$$

$$\frac{1}{m^n-n^2}(0-0-0+0)=0$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K