MHB Chebyshev's Method: Recursive Algorithm & Polynomial Form

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Method
Click For Summary
Chebyshev's method is a recursive algorithm for calculating the $n$th multiple angle formula for the cosine function, defined as $T_n \equiv \cos(n\theta)$, with the recursion $T_{n+1} = 2xT_n - T_{n-1}$ where $x = \cos(\theta)$. The closed polynomial form for $T_n$ is derived using the characteristic polynomial method, yielding $T_n = \frac{(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n}{2}$. The integral $\int_{-1}^1 T_n \, dx$ evaluates to zero for odd $n$ and to $-\frac{2}{n^2 - 1}$ for even $n$. Additionally, the integral $\int_{-1}^1 \frac{T_n T_m}{\sqrt{1-x^2}} \, dx$ is zero for $n \neq m$ and equals $\frac{\pi}{2}$ for $n = m$.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Chebyshev's method is a recursive algorithm for computing the $n$th multiple angle formula for the cosine function. If we define:

$$T_{n}\equiv \cos(n\theta)$$

then the algorithm is given as:

$$T_{n+1}=2xT_{n}-T_{n-1}$$

where:

$$x=\cos(\theta)$$

a) Using trigonometric identities (or otherwise), derive the recursive algorithm.

b) Find a closed polynomial form for $T_{n}$.

c) Compute $$\int_{-1}^1 T_n\,dx$$

d) Compute $$\int_{-1}^1 \frac{T_nT_m}{\sqrt{1-x^2}}\,dx$$
 
Mathematics news on Phys.org
a)

$ \displaystyle T_{n+1}(x) = T_{n+1}(\cos \theta) = \cos \Big((n+1) \theta \Big) = \cos (n \theta) \cos (\theta) - \sin(n \theta) \sin(\theta)$

$ \displaystyle T_{n-1}(x) = T_{n-1}(\cos \theta) = \cos \Big((n-1) \theta \Big) = \cos (n \theta) \cos (\theta) + \sin(n \theta) \sin(\theta) $So $ \displaystyle T_{n+1}(\cos \theta) + T_{n-1} \cos(\theta) = 2 \cos(n \theta) \cos (\theta) = 2 \cos \theta \ T_{n}(\cos \theta) $Or $ \displaystyle T_{n+1}(x) = 2x T_{n}(x) - T_{n-1}(x) $
b)

$ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx $

Let $ x = \cos \theta $

$ \displaystyle = \int_{0}^{\pi} T_{n}(\cos \theta) \sin \theta \ d \theta = \int_{0}^{\pi} \cos(n \theta) \sin \theta \ d \theta = \frac{1}{2} \int_{0}^{\pi} \Big( \sin (n+1) \theta - \sin(n-1) \theta \Big) \ d \theta$

$ \displaystyle = - \frac{1}{2(n+1)} \Big( (-1)^{n+1}- 1 \Big) + \frac{1}{2(n-1)} \Big((-1)^{n-1} -1 \big) $If $n$ is odd, $ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx = 0$

If $n$ is even $ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx = \frac{1}{n+1} - \frac{1}{n-1} = -\frac{2}{n^{2}-1}$
 
Last edited:
d)$ \displaystyle \int_{-1}^1 \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}}\,dx $

Let $x = \cos \theta $

$ \displaystyle = \int_{0}^{\pi} T_n( \cos \theta)T_m(\cos \theta ) \ d \theta = \int_{0}^{\pi} \cos( n \theta) \cos( m \theta) \ d \theta = \frac{1}{2} \int_{0}^{\pi} \Big(\cos(n+m) \theta + \cos (n-m) \Big) \ d \theta $If $n \ne m$, $ \displaystyle \int_{-1}^1 \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}}\,dx = \frac{1}{2(n+m)} \Big(\sin(n+m) \pi - 0 \Big) + \frac{1}{2(n-m)} \Big( \sin(n-m) \pi - 0 \Big) = 0 $If $n = m$, $ \displaystyle \int_{-1}^1 \frac{T^{2}_n(x)}{\sqrt{1-x^2}}\,dx = \frac{1}{4n} \Big(\sin(2n \pi) - 0 \Big) + \frac{\pi}{2} = \frac{\pi}{2} $
 
Last edited:
I skipped (b) because I initially thought we were dealing with a recurrence relation with a variable coefficient. (Doh)$ \displaystyle T_{n+1} - 2xT_{n} - T_{n-1} = 0 $ has the associated characteristic polynomial $r^{2}-2xr - 1 = 0$

which has roots $ \displaystyle r = x \pm \sqrt{x^{2}-1} $.So the general solution is $T_{n} = c_{1} \Big(x + \sqrt{x^{2}-1} \Big)^{n} + c_{2} \Big(x - \sqrt{x^{2}-1} \Big)^{n} $.$ \displaystyle T_{0} = 1 = c_{1}+c_{2}$

$\displaystyle T_{1} = x = c_{1} \Big(x + \sqrt{x^{2}-1} \Big) + c_{2} \Big(x - \sqrt{x^{2}-1} \Big) $So just by inspection, $\displaystyle c_{1}=c_{2} = \frac{1}{2} $

And $ \displaystyle T_{n} = \frac{\Big(x + \sqrt{x^{2}-1} \Big)^{n} + \Big(x - \sqrt{x^{2}-1} \Big)^{n}}{2} $ which is evidently a polynomial in $x$ for all values of $n$
 
Last edited:
Bravo, Random Variable! (Clapping)

Thank you for taking the time to post such lucid explanations. (Yes)

Here are my solutions:

a) Using trigonometric identities (or otherwise), derive the recursive algorithm.

We may begin with the identity:

$$\cos((n+1)\theta)=\cos((n+1)\theta)$$

Add $$0=\cos((n-1)\theta)-\cos((n-1)\theta)$$ to the right side:

$$\cos((n+1)\theta)=\cos((n+1)\theta)+\cos((n-1)\theta)-\cos((n-1)\theta)$$

To the first two terms on the right, apply the following sum to product identity:

$$\cos(\alpha)+\cos(\beta)=2\cos\left(\frac{\alpha-\beta}{2} \right)\cos\left(\frac{\alpha+\beta}{2} \right)$$

and we have:

$$\cos((n+1)\theta)=2\cos(\theta)\cos(n\theta)-\cos((n-1)\theta)$$

And so we may write:

$$T_{n+1}=2xT_{n}-T_{n-1}$$

b) Find a closed polynomial form for $T_{n}$.

This is a homogeneous recurrence whose associated auxiliary equation is:

$$r^2-2xr+1=0$$

Application of the quadratic formula yields:

$$r=x\pm\sqrt{x^2-1}$$

Thus, the solution is of the form:

$$T_n(x)=c_1\left(x-\sqrt{x^2-1} \right)^n+c_2\left(x+\sqrt{x^2-1} \right)^n$$

Use initial conditions to determine constants:

$$T_0=c_1+c_2=1$$

$$T_1=c_1\left(x-\sqrt{x^2-1} \right)+c_2\left(x+\sqrt{x^2-1} \right)=x$$

Substituting from the first into the second:

$$c_1\left(x-\sqrt{x^2-1} \right)+\left(1-c_1 \right)\left(x+\sqrt{x^2-1} \right)=x$$

$$c_1x-c_1\sqrt{x^2-1}+x+\sqrt{x^2-1}-c_1x-c_1\sqrt{x^2-1}=x$$

$$-2c_1\sqrt{x^2-1}+\sqrt{x^2-1}=0$$

$$c_1=\frac{1}{2}\,\therefore\,c_2=\frac{1}{2}$$

Thus, the closed form for $T_n(x)$ is:

$$T_n(x)=\frac{1}{2}\left(\left(x-\sqrt{x^2-1} \right)^n+\left(x+\sqrt{x^2-1} \right)^n \right)$$

Using the binomial theorem, we may state:

$$T_n(x)=\frac{1}{2}\left(\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(-\sqrt{x^2-1} \right)^k \right)+\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right) \right)$$

$$T_n(x)=\frac{1}{2}\left(\sum_{k=0}^n\left({n \choose k}x^{n-k}(-1)^k\left(\sqrt{x^2-1} \right)^k \right)+\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right) \right)$$

$$T_n(x)=\frac{1}{2}\sum_{k=0}^n\left(\left(1+(-1)^k \right){n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right)$$

$$T_n(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor}\left({n \choose 2k}x^{n-2k}\left(x^2-1 \right)^k \right)$$

c) Compute $$\int_{-1}^1 T_n\,dx$$

From the recurrence relation, we may compute:

$$T_n(x)=\frac{1}{2}\left(\frac{1}{n+1}\cdot\frac{d}{dx}T_{n+1}(x)-\frac{1}{n-1}\cdot\frac{d}{dx}T_{n-1}(x) \right)$$

$$\int_{-1}^1 T_n(x)\,dx=\frac{1}{2}\left[\frac{T_{n+1}(x)}{n+1}-\frac{T_{n-1}(x)}{n-1} \right]_{-1}^1$$

From the definition, we see that $T_n(1)=1$ and $T_n(-1)=1\text{ n even or }-1\text{ n odd}$, thus:

For even $n$:

$$\int_{-1}^1 T_n(x)\,dx=\frac{1}{n+1}-\frac{1}{n-1}=\frac{2}{1-n^2}$$

For odd $n$:

$$\int_{-1}^1 T_n(x)\,dx=0$$

d) Compute $$\int_{-1}^1 \frac{T_nT_m}{\sqrt{1-x^2}}\,dx$$

$$Let x=\cos(\theta)\,\therefore\,dx=-\sin(\theta)\,d\theta$$

$$I=\int_{0}^{\pi} \cos(n\theta)\cos(m\theta)\,d\theta$$

For $n=m=0$:

$$I=\int_{0}^{\pi}\,d\theta=\pi$$

For $n=m\ne0$:

$$I=\int_{0}^{\pi} \cos^2(n\theta)\,d\theta$$

Let $$u=n\theta\,\therefore\,du=n\,d\theta$$

$$I=\frac{1}{n}\int_{0}^{n\pi} \cos^2(u)\,du=\frac{1}{2n}\int_{0}^{n\pi}\cos(2u)+1\,du=$$

$$\frac{1}{2n}\left[\frac{1}{2}\sin(2u)+u \right]_0^{n\pi}=\frac{1}{2n}\left(0+n\pi-0-0 \right)=\frac{\pi}{2}$$

For $n\ne m$:

$$I=\int_{0}^{\pi} \cos(n\theta)\cos(m\theta)\,d\theta=$$

$$\left[\frac{m\sin(m\theta)\cos(n\theta)-n\cos(m\theta)\sin(n\theta)}{m^2-n^2} \right]_{0}^{\pi}=$$

$$\frac{1}{m^n-n^2}(0-0-0+0)=0$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 96 ·
4
Replies
96
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K