a) Using trigonometric identities (or otherwise), derive the recursive algorithm.
We may begin with the identity:
$$\cos((n+1)\theta)=\cos((n+1)\theta)$$
Add $$0=\cos((n-1)\theta)-\cos((n-1)\theta)$$ to the right side:
$$\cos((n+1)\theta)=\cos((n+1)\theta)+\cos((n-1)\theta)-\cos((n-1)\theta)$$
To the first two terms on the right, apply the following sum to product identity:
$$\cos(\alpha)+\cos(\beta)=2\cos\left(\frac{\alpha-\beta}{2} \right)\cos\left(\frac{\alpha+\beta}{2} \right)$$
and we have:
$$\cos((n+1)\theta)=2\cos(\theta)\cos(n\theta)-\cos((n-1)\theta)$$
And so we may write:
$$T_{n+1}=2xT_{n}-T_{n-1}$$
b) Find a closed polynomial form for $T_{n}$.
This is a homogeneous recurrence whose associated auxiliary equation is:
$$r^2-2xr+1=0$$
Application of the quadratic formula yields:
$$r=x\pm\sqrt{x^2-1}$$
Thus, the solution is of the form:
$$T_n(x)=c_1\left(x-\sqrt{x^2-1} \right)^n+c_2\left(x+\sqrt{x^2-1} \right)^n$$
Use initial conditions to determine constants:
$$T_0=c_1+c_2=1$$
$$T_1=c_1\left(x-\sqrt{x^2-1} \right)+c_2\left(x+\sqrt{x^2-1} \right)=x$$
Substituting from the first into the second:
$$c_1\left(x-\sqrt{x^2-1} \right)+\left(1-c_1 \right)\left(x+\sqrt{x^2-1} \right)=x$$
$$c_1x-c_1\sqrt{x^2-1}+x+\sqrt{x^2-1}-c_1x-c_1\sqrt{x^2-1}=x$$
$$-2c_1\sqrt{x^2-1}+\sqrt{x^2-1}=0$$
$$c_1=\frac{1}{2}\,\therefore\,c_2=\frac{1}{2}$$
Thus, the closed form for $T_n(x)$ is:
$$T_n(x)=\frac{1}{2}\left(\left(x-\sqrt{x^2-1} \right)^n+\left(x+\sqrt{x^2-1} \right)^n \right)$$
Using the binomial theorem, we may state:
$$T_n(x)=\frac{1}{2}\left(\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(-\sqrt{x^2-1} \right)^k \right)+\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right) \right)$$
$$T_n(x)=\frac{1}{2}\left(\sum_{k=0}^n\left({n \choose k}x^{n-k}(-1)^k\left(\sqrt{x^2-1} \right)^k \right)+\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right) \right)$$
$$T_n(x)=\frac{1}{2}\sum_{k=0}^n\left(\left(1+(-1)^k \right){n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right)$$
$$T_n(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor}\left({n \choose 2k}x^{n-2k}\left(x^2-1 \right)^k \right)$$
c) Compute $$\int_{-1}^1 T_n\,dx$$
From the recurrence relation, we may compute:
$$T_n(x)=\frac{1}{2}\left(\frac{1}{n+1}\cdot\frac{d}{dx}T_{n+1}(x)-\frac{1}{n-1}\cdot\frac{d}{dx}T_{n-1}(x) \right)$$
$$\int_{-1}^1 T_n(x)\,dx=\frac{1}{2}\left[\frac{T_{n+1}(x)}{n+1}-\frac{T_{n-1}(x)}{n-1} \right]_{-1}^1$$
From the definition, we see that $T_n(1)=1$ and $T_n(-1)=1\text{ n even or }-1\text{ n odd}$, thus:
For even $n$:
$$\int_{-1}^1 T_n(x)\,dx=\frac{1}{n+1}-\frac{1}{n-1}=\frac{2}{1-n^2}$$
For odd $n$:
$$\int_{-1}^1 T_n(x)\,dx=0$$
d) Compute $$\int_{-1}^1 \frac{T_nT_m}{\sqrt{1-x^2}}\,dx$$
$$Let x=\cos(\theta)\,\therefore\,dx=-\sin(\theta)\,d\theta$$
$$I=\int_{0}^{\pi} \cos(n\theta)\cos(m\theta)\,d\theta$$
For $n=m=0$:
$$I=\int_{0}^{\pi}\,d\theta=\pi$$
For $n=m\ne0$:
$$I=\int_{0}^{\pi} \cos^2(n\theta)\,d\theta$$
Let $$u=n\theta\,\therefore\,du=n\,d\theta$$
$$I=\frac{1}{n}\int_{0}^{n\pi} \cos^2(u)\,du=\frac{1}{2n}\int_{0}^{n\pi}\cos(2u)+1\,du=$$
$$\frac{1}{2n}\left[\frac{1}{2}\sin(2u)+u \right]_0^{n\pi}=\frac{1}{2n}\left(0+n\pi-0-0 \right)=\frac{\pi}{2}$$
For $n\ne m$:
$$I=\int_{0}^{\pi} \cos(n\theta)\cos(m\theta)\,d\theta=$$
$$\left[\frac{m\sin(m\theta)\cos(n\theta)-n\cos(m\theta)\sin(n\theta)}{m^2-n^2} \right]_{0}^{\pi}=$$
$$\frac{1}{m^n-n^2}(0-0-0+0)=0$$