Chebyshev's Method: Recursive Algorithm & Polynomial Form

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Method
Click For Summary
SUMMARY

Chebyshev's method is a recursive algorithm used to compute the $n$th multiple angle formula for the cosine function, defined as $T_{n} \equiv \cos(n\theta)$. The recursive relation is given by $T_{n+1} = 2xT_{n} - T_{n-1}$, where $x = \cos(\theta)$. The closed polynomial form for $T_{n}$ is derived as $T_{n} = \frac{(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n}{2}$. Additionally, integrals involving $T_n$ are computed, revealing that $\int_{-1}^{1} T_n(x) \, dx = 0$ for odd $n$ and $\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} \, dx = 0$ for $n \neq m$.

PREREQUISITES
  • Understanding of recursive algorithms
  • Familiarity with trigonometric identities
  • Knowledge of polynomial functions
  • Experience with integral calculus
NEXT STEPS
  • Study the derivation of Chebyshev polynomials in detail
  • Learn about the applications of Chebyshev polynomials in approximation theory
  • Explore numerical methods for evaluating integrals involving orthogonal polynomials
  • Investigate the properties of Chebyshev polynomials related to their roots and extremal properties
USEFUL FOR

Mathematicians, computer scientists, and engineers interested in numerical methods, polynomial approximations, and recursive algorithms will benefit from this discussion.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Chebyshev's method is a recursive algorithm for computing the $n$th multiple angle formula for the cosine function. If we define:

$$T_{n}\equiv \cos(n\theta)$$

then the algorithm is given as:

$$T_{n+1}=2xT_{n}-T_{n-1}$$

where:

$$x=\cos(\theta)$$

a) Using trigonometric identities (or otherwise), derive the recursive algorithm.

b) Find a closed polynomial form for $T_{n}$.

c) Compute $$\int_{-1}^1 T_n\,dx$$

d) Compute $$\int_{-1}^1 \frac{T_nT_m}{\sqrt{1-x^2}}\,dx$$
 
Physics news on Phys.org
a)

$ \displaystyle T_{n+1}(x) = T_{n+1}(\cos \theta) = \cos \Big((n+1) \theta \Big) = \cos (n \theta) \cos (\theta) - \sin(n \theta) \sin(\theta)$

$ \displaystyle T_{n-1}(x) = T_{n-1}(\cos \theta) = \cos \Big((n-1) \theta \Big) = \cos (n \theta) \cos (\theta) + \sin(n \theta) \sin(\theta) $So $ \displaystyle T_{n+1}(\cos \theta) + T_{n-1} \cos(\theta) = 2 \cos(n \theta) \cos (\theta) = 2 \cos \theta \ T_{n}(\cos \theta) $Or $ \displaystyle T_{n+1}(x) = 2x T_{n}(x) - T_{n-1}(x) $
b)

$ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx $

Let $ x = \cos \theta $

$ \displaystyle = \int_{0}^{\pi} T_{n}(\cos \theta) \sin \theta \ d \theta = \int_{0}^{\pi} \cos(n \theta) \sin \theta \ d \theta = \frac{1}{2} \int_{0}^{\pi} \Big( \sin (n+1) \theta - \sin(n-1) \theta \Big) \ d \theta$

$ \displaystyle = - \frac{1}{2(n+1)} \Big( (-1)^{n+1}- 1 \Big) + \frac{1}{2(n-1)} \Big((-1)^{n-1} -1 \big) $If $n$ is odd, $ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx = 0$

If $n$ is even $ \displaystyle \int_{-1}^{1} T_{n}(x) \ dx = \frac{1}{n+1} - \frac{1}{n-1} = -\frac{2}{n^{2}-1}$
 
Last edited:
d)$ \displaystyle \int_{-1}^1 \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}}\,dx $

Let $x = \cos \theta $

$ \displaystyle = \int_{0}^{\pi} T_n( \cos \theta)T_m(\cos \theta ) \ d \theta = \int_{0}^{\pi} \cos( n \theta) \cos( m \theta) \ d \theta = \frac{1}{2} \int_{0}^{\pi} \Big(\cos(n+m) \theta + \cos (n-m) \Big) \ d \theta $If $n \ne m$, $ \displaystyle \int_{-1}^1 \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}}\,dx = \frac{1}{2(n+m)} \Big(\sin(n+m) \pi - 0 \Big) + \frac{1}{2(n-m)} \Big( \sin(n-m) \pi - 0 \Big) = 0 $If $n = m$, $ \displaystyle \int_{-1}^1 \frac{T^{2}_n(x)}{\sqrt{1-x^2}}\,dx = \frac{1}{4n} \Big(\sin(2n \pi) - 0 \Big) + \frac{\pi}{2} = \frac{\pi}{2} $
 
Last edited:
I skipped (b) because I initially thought we were dealing with a recurrence relation with a variable coefficient. (Doh)$ \displaystyle T_{n+1} - 2xT_{n} - T_{n-1} = 0 $ has the associated characteristic polynomial $r^{2}-2xr - 1 = 0$

which has roots $ \displaystyle r = x \pm \sqrt{x^{2}-1} $.So the general solution is $T_{n} = c_{1} \Big(x + \sqrt{x^{2}-1} \Big)^{n} + c_{2} \Big(x - \sqrt{x^{2}-1} \Big)^{n} $.$ \displaystyle T_{0} = 1 = c_{1}+c_{2}$

$\displaystyle T_{1} = x = c_{1} \Big(x + \sqrt{x^{2}-1} \Big) + c_{2} \Big(x - \sqrt{x^{2}-1} \Big) $So just by inspection, $\displaystyle c_{1}=c_{2} = \frac{1}{2} $

And $ \displaystyle T_{n} = \frac{\Big(x + \sqrt{x^{2}-1} \Big)^{n} + \Big(x - \sqrt{x^{2}-1} \Big)^{n}}{2} $ which is evidently a polynomial in $x$ for all values of $n$
 
Last edited:
Bravo, Random Variable! (Clapping)

Thank you for taking the time to post such lucid explanations. (Yes)

Here are my solutions:

a) Using trigonometric identities (or otherwise), derive the recursive algorithm.

We may begin with the identity:

$$\cos((n+1)\theta)=\cos((n+1)\theta)$$

Add $$0=\cos((n-1)\theta)-\cos((n-1)\theta)$$ to the right side:

$$\cos((n+1)\theta)=\cos((n+1)\theta)+\cos((n-1)\theta)-\cos((n-1)\theta)$$

To the first two terms on the right, apply the following sum to product identity:

$$\cos(\alpha)+\cos(\beta)=2\cos\left(\frac{\alpha-\beta}{2} \right)\cos\left(\frac{\alpha+\beta}{2} \right)$$

and we have:

$$\cos((n+1)\theta)=2\cos(\theta)\cos(n\theta)-\cos((n-1)\theta)$$

And so we may write:

$$T_{n+1}=2xT_{n}-T_{n-1}$$

b) Find a closed polynomial form for $T_{n}$.

This is a homogeneous recurrence whose associated auxiliary equation is:

$$r^2-2xr+1=0$$

Application of the quadratic formula yields:

$$r=x\pm\sqrt{x^2-1}$$

Thus, the solution is of the form:

$$T_n(x)=c_1\left(x-\sqrt{x^2-1} \right)^n+c_2\left(x+\sqrt{x^2-1} \right)^n$$

Use initial conditions to determine constants:

$$T_0=c_1+c_2=1$$

$$T_1=c_1\left(x-\sqrt{x^2-1} \right)+c_2\left(x+\sqrt{x^2-1} \right)=x$$

Substituting from the first into the second:

$$c_1\left(x-\sqrt{x^2-1} \right)+\left(1-c_1 \right)\left(x+\sqrt{x^2-1} \right)=x$$

$$c_1x-c_1\sqrt{x^2-1}+x+\sqrt{x^2-1}-c_1x-c_1\sqrt{x^2-1}=x$$

$$-2c_1\sqrt{x^2-1}+\sqrt{x^2-1}=0$$

$$c_1=\frac{1}{2}\,\therefore\,c_2=\frac{1}{2}$$

Thus, the closed form for $T_n(x)$ is:

$$T_n(x)=\frac{1}{2}\left(\left(x-\sqrt{x^2-1} \right)^n+\left(x+\sqrt{x^2-1} \right)^n \right)$$

Using the binomial theorem, we may state:

$$T_n(x)=\frac{1}{2}\left(\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(-\sqrt{x^2-1} \right)^k \right)+\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right) \right)$$

$$T_n(x)=\frac{1}{2}\left(\sum_{k=0}^n\left({n \choose k}x^{n-k}(-1)^k\left(\sqrt{x^2-1} \right)^k \right)+\sum_{k=0}^n\left({n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right) \right)$$

$$T_n(x)=\frac{1}{2}\sum_{k=0}^n\left(\left(1+(-1)^k \right){n \choose k}x^{n-k}\left(\sqrt{x^2-1} \right)^k \right)$$

$$T_n(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor}\left({n \choose 2k}x^{n-2k}\left(x^2-1 \right)^k \right)$$

c) Compute $$\int_{-1}^1 T_n\,dx$$

From the recurrence relation, we may compute:

$$T_n(x)=\frac{1}{2}\left(\frac{1}{n+1}\cdot\frac{d}{dx}T_{n+1}(x)-\frac{1}{n-1}\cdot\frac{d}{dx}T_{n-1}(x) \right)$$

$$\int_{-1}^1 T_n(x)\,dx=\frac{1}{2}\left[\frac{T_{n+1}(x)}{n+1}-\frac{T_{n-1}(x)}{n-1} \right]_{-1}^1$$

From the definition, we see that $T_n(1)=1$ and $T_n(-1)=1\text{ n even or }-1\text{ n odd}$, thus:

For even $n$:

$$\int_{-1}^1 T_n(x)\,dx=\frac{1}{n+1}-\frac{1}{n-1}=\frac{2}{1-n^2}$$

For odd $n$:

$$\int_{-1}^1 T_n(x)\,dx=0$$

d) Compute $$\int_{-1}^1 \frac{T_nT_m}{\sqrt{1-x^2}}\,dx$$

$$Let x=\cos(\theta)\,\therefore\,dx=-\sin(\theta)\,d\theta$$

$$I=\int_{0}^{\pi} \cos(n\theta)\cos(m\theta)\,d\theta$$

For $n=m=0$:

$$I=\int_{0}^{\pi}\,d\theta=\pi$$

For $n=m\ne0$:

$$I=\int_{0}^{\pi} \cos^2(n\theta)\,d\theta$$

Let $$u=n\theta\,\therefore\,du=n\,d\theta$$

$$I=\frac{1}{n}\int_{0}^{n\pi} \cos^2(u)\,du=\frac{1}{2n}\int_{0}^{n\pi}\cos(2u)+1\,du=$$

$$\frac{1}{2n}\left[\frac{1}{2}\sin(2u)+u \right]_0^{n\pi}=\frac{1}{2n}\left(0+n\pi-0-0 \right)=\frac{\pi}{2}$$

For $n\ne m$:

$$I=\int_{0}^{\pi} \cos(n\theta)\cos(m\theta)\,d\theta=$$

$$\left[\frac{m\sin(m\theta)\cos(n\theta)-n\cos(m\theta)\sin(n\theta)}{m^2-n^2} \right]_{0}^{\pi}=$$

$$\frac{1}{m^n-n^2}(0-0-0+0)=0$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K