- #1
psimeson
- 19
- 0
Homework Statement
It's not exactly a homework question. I can find Christoffel Symbols using general definition of Christoffel symbol. But, when I try to find Christoffel Symbols using variational principle, I end up getting zero.
I have started with the space-time metric in a weak gravitational field (with the assumption of low velocity):
ds2=−(1+2ϕ)dt2+(1−2ϕ)(dx2+dy2+dz2)
Where
ϕ<<1 is the gravitational potential.
Homework Equations
Euler Lagrange(EL) Equation: [itex]\frac{d}{d\tau}[/itex]([itex]\frac{dL}{d\dot{x^{a}}}[/itex]) = [itex]\frac{dL}{dx}[/itex]
The Attempt at a Solution
Lagrangian:
L = −(1+2ϕ)[itex]\dot{t}[/itex]2+(1−2ϕ)([itex]\dot{x}[/itex]2+[itex]\dot{y}[/itex]2+[itex]\dot{z}[/itex]2)
using EL:[itex]\frac{d}{d\tau}[/itex]([itex]\frac{dL}{d\dot{t}}[/itex]) = [itex]\frac{dL}{dx}[/itex]
−(1+2ϕ)[itex]\ddot{t}[/itex]= 0
I repeated the similar process for x, y, and z and I got zero for all. Can someone please help me?
Answer should be:
Γtti=ϕ,i
Γi00=ϕ,i,Γijk=δjkϕ,i−δijϕ,k−δikϕ,j
Last edited: