Widdekind
- 132
- 0
ROUGH DRAFT
I have a beginner's basic question:
1. Schwarzschild Metric components
Let \epsilon = rs / r, where rs is the Schwarzschild Radius. Then, as is is well-known:
B/c this Schwarzschild Metric Tensor gij is Diagonal, its Inverse gij is also Diagonal, w/ components equal to "one over" those above.2. Christoffel Symbol components
As is well-known:
But, since the Schwarzschild Metric Tensor is diagonal, g^{im} = \delta^{im} \; g^{ii}. So:
Thus, in this Schwarzschild Polar Coordinate System, w.h.t.:
Or, noting that \partial \epsilon / \partial r = - \epsilon / r, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> (1 - \epsilon)^{-1} {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( 1 - \epsilon \right) \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} - \left( 1 - \epsilon \right)^{-2}{\epsilon \over r}{\partial r \over \partial s}^{2} - 2 r {\partial \theta \over \partial s}^{2} - 2 r \; sin^{2}(\theta) {\partial \phi \over \partial s}^{2} \right) \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} - {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 04. Zero-Gravity limit (??)
If \epsilon = 0, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> 0 \\<br /> - r {\partial (\theta) \over \partial s}^{2} - r \; sin^{2}(\theta) {\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0
Further restricting \theta = {\pi \over 2}, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> 0 \\<br /> - r {\partial (\phi) \over \partial s}^{2} \\<br /> 0 \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0
Is this the equation of a straight line in Polar Coordinates ?5. Weak-Gravity limit (??)
If \epsilon << 1, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} + {\epsilon \over r}{\partial (r) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial (\theta) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r \; sin^{2}(\theta) {\partial (\phi) \over \partial s}^{2} \right) \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0
Further restricting \theta = {\pi \over 2}, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} + {\epsilon \over r}{\partial (r) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial (\phi) \over \partial s}^{2} \right) \\<br /> 0 \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0
Does this reduce to Newton's equations ?
I have a beginner's basic question:
1. Schwarzschild Metric components
Let \epsilon = rs / r, where rs is the Schwarzschild Radius. Then, as is is well-known:
g_{00} = 1 - \epsilon
g_{11} = - \left( 1 - \epsilon \right)^{-1}
g_{22} = - r^{2}
g_{33} = - r^{2} \; sin^{2}(\theta)
g_{11} = - \left( 1 - \epsilon \right)^{-1}
g_{22} = - r^{2}
g_{33} = - r^{2} \; sin^{2}(\theta)
B/c this Schwarzschild Metric Tensor gij is Diagonal, its Inverse gij is also Diagonal, w/ components equal to "one over" those above.2. Christoffel Symbol components
As is well-known:
\Gamma^{i}_{k\ell} = {1 \over 2} g^{im} (g_{mk,\ell} + g_{m\ell,k} - g_{k\ell,m})
But, since the Schwarzschild Metric Tensor is diagonal, g^{im} = \delta^{im} \; g^{ii}. So:
\Gamma^{i}_{k\ell} = {1 \over 2} g^{ii} (g_{ik,\ell} + g_{i\ell,k} - g_{k\ell,i}) + 0
Thus, in this Schwarzschild Polar Coordinate System, w.h.t.:
\Gamma^{0}_{k\ell} = {1 \over 2} g^{00} \[ \left( \begin{array}{cccc}<br />
0 & g_{00,1} & 0 & 0 \\<br />
g_{00,1} & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 \end{array} \right)\]
\Gamma^{1}_{k\ell} = {1 \over 2} g^{11} \[ \left( \begin{array}{cccc}<br /> -g_{00,1} & 0 & 0 & 0 \\<br /> 0 & g_{11,1} & 0 & 0 \\<br /> 0 & 0 & -g_{22,1} & 0 \\<br /> 0 & 0 & 0 & -g_{33,1} \end{array} \right)\]
\Gamma^{2}_{k\ell} = {1 \over 2} g^{22} \[ \left( \begin{array}{cccc}<br /> 0 & 0 & 0 & 0 \\<br /> 0 & 0 & g_{22,1} & 0 \\<br /> 0 & g_{22,1} & 0 & 0 \\<br /> 0 & 0 & 0 & -g_{33,2} \end{array} \right)\]
\Gamma^{3}_{k\ell} = {1 \over 2} g^{33} \[ \left( \begin{array}{cccc}<br /> 0 & 0 & 0 & 0 \\<br /> 0 & 0 & 0 & g_{33,1} \\<br /> 0 & 0 & 0 & g_{33,2} \\<br /> 0 & g_{33,1} & g_{33,2} & 0 \end{array} \right)\]
\Gamma^{1}_{k\ell} = {1 \over 2} g^{11} \[ \left( \begin{array}{cccc}<br /> -g_{00,1} & 0 & 0 & 0 \\<br /> 0 & g_{11,1} & 0 & 0 \\<br /> 0 & 0 & -g_{22,1} & 0 \\<br /> 0 & 0 & 0 & -g_{33,1} \end{array} \right)\]
\Gamma^{2}_{k\ell} = {1 \over 2} g^{22} \[ \left( \begin{array}{cccc}<br /> 0 & 0 & 0 & 0 \\<br /> 0 & 0 & g_{22,1} & 0 \\<br /> 0 & g_{22,1} & 0 & 0 \\<br /> 0 & 0 & 0 & -g_{33,2} \end{array} \right)\]
\Gamma^{3}_{k\ell} = {1 \over 2} g^{33} \[ \left( \begin{array}{cccc}<br /> 0 & 0 & 0 & 0 \\<br /> 0 & 0 & 0 & g_{33,1} \\<br /> 0 & 0 & 0 & g_{33,2} \\<br /> 0 & g_{33,1} & g_{33,2} & 0 \end{array} \right)\]
Or, noting that \partial \epsilon / \partial r = - \epsilon / r, w.h.t.:
\Gamma^{0}_{k\ell} = {1 \over 2} (1 - \epsilon)^{-1} \[ \left( \begin{array}{cccc}<br />
0 & \epsilon / r & 0 & 0 \\<br />
\epsilon / r & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 \\<br />
0 & 0 & 0 & 0 \end{array} \right)\]
\Gamma^{1}_{k\ell} = -{1 \over 2} \left( 1 - \epsilon \right) \[ \left( \begin{array}{cccc}<br /> -\epsilon / r & 0 & 0 & 0 \\<br /> 0 & \left( 1 - \epsilon \right)^{-2}(\epsilon / r) & 0 & 0 \\<br /> 0 & 0 & 2 r & 0 \\<br /> 0 & 0 & 0 & 2 r \; sin^{2}(\theta) \end{array} \right)\]
\Gamma^{2}_{k\ell} = -{1 \over 2} r^{-2} \[ \left( \begin{array}{cccc}<br /> 0 & 0 & 0 & 0 \\<br /> 0 & 0 & -2 r & 0 \\<br /> 0 & -2 r & 0 & 0 \\<br /> 0 & 0 & 0 & r^{2} \; sin(2 \theta) \end{array} \right)\]
\Gamma^{3}_{k\ell} = -{1 \over 2} r^{-2} \; sin^{-2}(\theta) \[ \left( \begin{array}{cccc}<br /> 0 & 0 & 0 & 0 \\<br /> 0 & 0 & 0 & -2 r \; sin^{2}(\theta) \\<br /> 0 & 0 & 0 & -r^{2} \; sin(2 \theta) \\<br /> 0 & -2 r \; sin^{2}(\theta) & -r^{2} \; sin(2 \theta) & 0 \end{array} \right)\]
3. Geodesic Equation (?!)\Gamma^{1}_{k\ell} = -{1 \over 2} \left( 1 - \epsilon \right) \[ \left( \begin{array}{cccc}<br /> -\epsilon / r & 0 & 0 & 0 \\<br /> 0 & \left( 1 - \epsilon \right)^{-2}(\epsilon / r) & 0 & 0 \\<br /> 0 & 0 & 2 r & 0 \\<br /> 0 & 0 & 0 & 2 r \; sin^{2}(\theta) \end{array} \right)\]
\Gamma^{2}_{k\ell} = -{1 \over 2} r^{-2} \[ \left( \begin{array}{cccc}<br /> 0 & 0 & 0 & 0 \\<br /> 0 & 0 & -2 r & 0 \\<br /> 0 & -2 r & 0 & 0 \\<br /> 0 & 0 & 0 & r^{2} \; sin(2 \theta) \end{array} \right)\]
\Gamma^{3}_{k\ell} = -{1 \over 2} r^{-2} \; sin^{-2}(\theta) \[ \left( \begin{array}{cccc}<br /> 0 & 0 & 0 & 0 \\<br /> 0 & 0 & 0 & -2 r \; sin^{2}(\theta) \\<br /> 0 & 0 & 0 & -r^{2} \; sin(2 \theta) \\<br /> 0 & -2 r \; sin^{2}(\theta) & -r^{2} \; sin(2 \theta) & 0 \end{array} \right)\]
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> (1 - \epsilon)^{-1} {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( 1 - \epsilon \right) \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} - \left( 1 - \epsilon \right)^{-2}{\epsilon \over r}{\partial r \over \partial s}^{2} - 2 r {\partial \theta \over \partial s}^{2} - 2 r \; sin^{2}(\theta) {\partial \phi \over \partial s}^{2} \right) \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} - {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 04. Zero-Gravity limit (??)
If \epsilon = 0, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> 0 \\<br /> - r {\partial (\theta) \over \partial s}^{2} - r \; sin^{2}(\theta) {\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0
Further restricting \theta = {\pi \over 2}, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> 0 \\<br /> - r {\partial (\phi) \over \partial s}^{2} \\<br /> 0 \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0
Is this the equation of a straight line in Polar Coordinates ?5. Weak-Gravity limit (??)
If \epsilon << 1, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} + {\epsilon \over r}{\partial (r) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial (\theta) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r \; sin^{2}(\theta) {\partial (\phi) \over \partial s}^{2} \right) \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0
Further restricting \theta = {\pi \over 2}, w.h.t.:
{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} + {\epsilon \over r}{\partial (r) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial (\phi) \over \partial s}^{2} \right) \\<br /> 0 \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0
Does this reduce to Newton's equations ?
Last edited: