Christoffel Symbols for Schwarzschild Metric (?)

Click For Summary

Discussion Overview

The discussion focuses on the Christoffel symbols associated with the Schwarzschild metric, exploring their derivation and implications in the context of geodesic equations. Participants examine various aspects of the metric, including its components, limits under different gravitational conditions, and the application of the Euler-Lagrange equation to verify the geodesic equation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents the components of the Schwarzschild metric and derives the Christoffel symbols, noting the diagonal nature of the metric tensor.
  • Another participant discusses the geodesic equation derived from the Schwarzschild metric, questioning whether certain forms represent straight lines in polar coordinates.
  • A later post introduces the zero-gravity limit and weak-gravity limit, posing questions about the resulting equations and their relation to Newton's equations.
  • One participant applies the Euler-Lagrange equation to the Lagrangian derived from the Schwarzschild metric, leading to further exploration of the geodesic equation.

Areas of Agreement / Disagreement

Participants express various hypotheses and questions regarding the implications of the derived equations and limits, but no consensus is reached on the interpretations or outcomes of these equations.

Contextual Notes

The discussion includes assumptions about the Schwarzschild radius and the conditions under which the limits are applied, which may affect the interpretations of the equations presented.

Widdekind
Messages
132
Reaction score
0
ROUGH DRAFT

I have a beginner's basic question:

1. Schwarzschild Metric components

Let \epsilon = rs / r, where rs is the Schwarzschild Radius. Then, as is is well-known:

g_{00} = 1 - \epsilon
g_{11} = - \left( 1 - \epsilon \right)^{-1}
g_{22} = - r^{2}
g_{33} = - r^{2} \; sin^{2}(\theta)​

B/c this Schwarzschild Metric Tensor gij is Diagonal, its Inverse gij is also Diagonal, w/ components equal to "one over" those above.2. Christoffel Symbol components

As is well-known:

\Gamma^{i}_{k\ell} = {1 \over 2} g^{im} (g_{mk,\ell} + g_{m\ell,k} - g_{k\ell,m})​

But, since the Schwarzschild Metric Tensor is diagonal, g^{im} = \delta^{im} \; g^{ii}. So:

\Gamma^{i}_{k\ell} = {1 \over 2} g^{ii} (g_{ik,\ell} + g_{i\ell,k} - g_{k\ell,i}) + 0​

Thus, in this Schwarzschild Polar Coordinate System, w.h.t.:

\Gamma^{0}_{k\ell} = {1 \over 2} g^{00} \[ \left( \begin{array}{cccc}<br /> 0 &amp; g_{00,1} &amp; 0 &amp; 0 \\<br /> g_{00,1} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 \end{array} \right)\]

\Gamma^{1}_{k\ell} = {1 \over 2} g^{11} \[ \left( \begin{array}{cccc}<br /> -g_{00,1} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; g_{11,1} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; -g_{22,1} &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; -g_{33,1} \end{array} \right)\]

\Gamma^{2}_{k\ell} = {1 \over 2} g^{22} \[ \left( \begin{array}{cccc}<br /> 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; g_{22,1} &amp; 0 \\<br /> 0 &amp; g_{22,1} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; -g_{33,2} \end{array} \right)\]

\Gamma^{3}_{k\ell} = {1 \over 2} g^{33} \[ \left( \begin{array}{cccc}<br /> 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; g_{33,1} \\<br /> 0 &amp; 0 &amp; 0 &amp; g_{33,2} \\<br /> 0 &amp; g_{33,1} &amp; g_{33,2} &amp; 0 \end{array} \right)\]​

Or, noting that \partial \epsilon / \partial r = - \epsilon / r, w.h.t.:
\Gamma^{0}_{k\ell} = {1 \over 2} (1 - \epsilon)^{-1} \[ \left( \begin{array}{cccc}<br /> 0 &amp; \epsilon / r &amp; 0 &amp; 0 \\<br /> \epsilon / r &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 \end{array} \right)\]

\Gamma^{1}_{k\ell} = -{1 \over 2} \left( 1 - \epsilon \right) \[ \left( \begin{array}{cccc}<br /> -\epsilon / r &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \left( 1 - \epsilon \right)^{-2}(\epsilon / r) &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 2 r &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 2 r \; sin^{2}(\theta) \end{array} \right)\]

\Gamma^{2}_{k\ell} = -{1 \over 2} r^{-2} \[ \left( \begin{array}{cccc}<br /> 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; -2 r &amp; 0 \\<br /> 0 &amp; -2 r &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; r^{2} \; sin(2 \theta) \end{array} \right)\]

\Gamma^{3}_{k\ell} = -{1 \over 2} r^{-2} \; sin^{-2}(\theta) \[ \left( \begin{array}{cccc}<br /> 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; -2 r \; sin^{2}(\theta) \\<br /> 0 &amp; 0 &amp; 0 &amp; -r^{2} \; sin(2 \theta) \\<br /> 0 &amp; -2 r \; sin^{2}(\theta) &amp; -r^{2} \; sin(2 \theta) &amp; 0 \end{array} \right)\]​
3. Geodesic Equation (?!)

{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> (1 - \epsilon)^{-1} {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( 1 - \epsilon \right) \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} - \left( 1 - \epsilon \right)^{-2}{\epsilon \over r}{\partial r \over \partial s}^{2} - 2 r {\partial \theta \over \partial s}^{2} - 2 r \; sin^{2}(\theta) {\partial \phi \over \partial s}^{2} \right) \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} - {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 04. Zero-Gravity limit (??)

If \epsilon = 0, w.h.t.:

{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> 0 \\<br /> - r {\partial (\theta) \over \partial s}^{2} - r \; sin^{2}(\theta) {\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0

Further restricting \theta = {\pi \over 2}, w.h.t.:

{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> 0 \\<br /> - r {\partial (\phi) \over \partial s}^{2} \\<br /> 0 \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0

Is this the equation of a straight line in Polar Coordinates ?5. Weak-Gravity limit (??)

If \epsilon &lt;&lt; 1, w.h.t.:

{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} + {\epsilon \over r}{\partial (r) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial (\theta) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r \; sin^{2}(\theta) {\partial (\phi) \over \partial s}^{2} \right) \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0

Further restricting \theta = {\pi \over 2}, w.h.t.:

{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} + {\epsilon \over r}{\partial (r) \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial (\phi) \over \partial s}^{2} \right) \\<br /> 0 \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0

Does this reduce to Newton's equations ?
 
Last edited:
Physics news on Phys.org
Last edited:
Verifying Geodesic Equation by applying Euler-Lagrange Equation to Scwarzschild Metric-derived Lagrangian

We apply the Euler-Lagrange Equation to the Scwarzschild Metric-derived Lagrangian:

L \equiv g_{\mu \nu} {d x^{\mu} \over ds} {d x^{\nu} \over ds} = 1​

Explicitly, w.h.t.:

L \equiv (1 - \epsilon) c^{2} {dt \over ds}^{2} - (1 - \epsilon)^{-1} {dr \over ds}^{2} - r^{2} {d \theta \over ds}^{2} - r^{2} sin^{2}(\theta) {d \phi \over ds}^{2}​

Applying the Euler-Lagrange Equation:

{\partial L \over \partial x^{\mu}} - {d \over ds}{\partial L \over \partial ({\partial x^{\mu} \over \partial s})} = 0​

w.h.t.:

\left( \begin{array}{c}<br /> 0 \\<br /> c^{2} {\epsilon \over r}{\partial t \over \partial s}^{2} + (1 - \epsilon)^{-2} {\epsilon \over r}{\partial r \over \partial s}^{2} - 2 r {\partial \theta \over \partial s}^{2} - 2 r sin^{2}(\theta) {\partial \phi \over \partial s}^{2}\\<br /> - r^{2} sin(2 \theta) {\partial \phi \over \partial s}^{2} \\<br /> 0 \end{array} \right) - \left( \begin{array}{c}<br /> 2 c^{2} {\epsilon \over r} {\partial r \over \partial s}{\partial t \over \partial s} + 2 c^{2} (1 - \epsilon) {\partial^{2} t \over \partial s^{2}} \\<br /> 2 (1 - \epsilon)^{-2} {\epsilon \over r}{\partial r \over \partial s}^{2} - 2 (1 - \epsilon)^{-1}{\partial^{2} r \over \partial s^{2}} \\<br /> -4 r {\partial r \over \partial s}{\partial \theta \over \partial s} - 2 r^{2}{\partial^{2} \theta \over \partial s^{2}} \\<br /> -2 r^{2} sin^{2}(\theta){\partial^{2} \phi \over \partial s^{2}} - 2 r^{2} sin(2 \theta) {\partial \theta \over \partial s}{\partial \phi \over \partial s} - 4 r {\partial r \over \partial s}{\partial \phi \over \partial s} \end{array} \right) = 0​

This seems to be substantially similar to the above-derived Geodesic Equation (so far).
 
Last edited:
UPDATE

4. Zero-Gravity limit (??)

If \epsilon = 0, w.h.t.:

{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> 0\\<br /> - r {\partial \theta \over \partial s}^{2} - r \; sin^{2}(\theta) {\partial \phi \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} - {sin(2 \theta) \over 2} {\partial (\phi) \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0

Further restricting \theta = {\pi \over 2}, w.h.t.:

{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> 0 \\<br /> - r {\partial (\phi) \over \partial s}^{2} \\<br /> 0 \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0

Is this the equation of a straight line in Polar Coordinates ?


5. Weak-Gravity limit (??)

If \epsilon &lt;&lt; 1, w.h.t.:

{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} - {\epsilon \over r}{\partial r \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial \theta \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r \; sin^{2}(\theta) {\partial \phi \over \partial s}^{2} \right) \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \theta \over \partial s} + {sin(2 \theta) \over 2}{\partial \phi \over \partial s}^{2} \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} + 2 cot(\theta){\partial \theta \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0

Further restricting \theta = {\pi \over 2}, w.h.t.:


{\partial^{2} \over \partial s^{2}} \left( \begin{array}{c}<br /> c t \\<br /> r \\<br /> \theta \\<br /> \phi \end{array} \right) + \left( \begin{array}{c}<br /> {\epsilon \over r} {\partial (ct) \over \partial s} {\partial r \over \partial s} \\<br /> {1 \over 2} \left( {\epsilon \over r}{\partial (ct) \over \partial s}^{2} - {\epsilon \over r}{\partial r \over \partial s}^{2} - \left( 1 - \epsilon \right) 2 r {\partial \phi \over \partial s}^{2} \right) \\<br /> 0 \\<br /> {2 \over r}{\partial r \over \partial s} {\partial \phi \over \partial s} \end{array} \right) = 0

Does this reduce to Newton's equations ?
 
There doesn't really appear to be a question here, which is probably why you haven't received any replies. If I were you, I would re-check your first calculation, and compare to well known results. (See, for example, http://arxiv.org/abs/0904.4184 for a useful catalogue of spacetimes).
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K