gerald V
- 66
- 3
- TL;DR Summary
- The force law for electric charges allows to observe actions smaller than Plancks constant
The force two static electric charges exert on each other fulfills (velocity of light set unity)
\begin{equation}
F r^2 = N_1 N_2 \alpha \hbar \;,
\end{equation}
where ##F## is the force, ##r## is the mutual distance, ##\alpha## is the dimensionless fine structure constant, ##\hbar## is Planck's (reduced) constant and ##N_1 , N_2## are whole numbers, respectively. Both sides of the equation have the dimension of ##action##.
If one holds one of the ##N## at the value unity and lets the other jump by plus/minus unity, the absolute value of the l.h.s.\ changes by an amount of ##\alpha \hbar \approx \frac {\hbar}{137}##.
This means by measuring the change of force at any given distance one can immediately observe a jump of action significantly smaller than Planck's constant.
So what about the quantization of action in units of ##\hbar##? Where is it valid and where is it not?
Is there any phase space physics behind the above? In particular, do ##Fr## (has dimension of ##momentum##) and ##r## span something like phase space? Are these conjugate quantities?
If not, why is there quantization (in smaller chunks, though)?
Thank you very much in advance.
\begin{equation}
F r^2 = N_1 N_2 \alpha \hbar \;,
\end{equation}
where ##F## is the force, ##r## is the mutual distance, ##\alpha## is the dimensionless fine structure constant, ##\hbar## is Planck's (reduced) constant and ##N_1 , N_2## are whole numbers, respectively. Both sides of the equation have the dimension of ##action##.
If one holds one of the ##N## at the value unity and lets the other jump by plus/minus unity, the absolute value of the l.h.s.\ changes by an amount of ##\alpha \hbar \approx \frac {\hbar}{137}##.
This means by measuring the change of force at any given distance one can immediately observe a jump of action significantly smaller than Planck's constant.
So what about the quantization of action in units of ##\hbar##? Where is it valid and where is it not?
Is there any phase space physics behind the above? In particular, do ##Fr## (has dimension of ##momentum##) and ##r## span something like phase space? Are these conjugate quantities?
If not, why is there quantization (in smaller chunks, though)?
Thank you very much in advance.