MHB Cilian's question at Yahoo Answers regarding integration by partial fractions

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question:

Cilian said:
Find the integral
\[\int\frac{19x^2-x+4}{x(1+4x^2)}\]

Here is a link to the question:

Integral of ((19x^2)-x+4)/(x(1+4(x^2)))? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Cilian,

We're going to use partial fractions to evaluate this integral. With that said, we note that the partial fraction decomposition will take on the form

\[\frac{19x^2-x+4}{x(1+4x^2)} = \frac{A}{x}+\frac{Bx+C}{1+4x^2}\]

Multiplying both sides by the common denominator yields

\[19x^2-x+4 = A(1+4x^2) + (Bx+C)x\]

We now simplify the right hand side and group like terms to get

\[19x^2-x+4 = (4A+B)x^2+Cx+A\]

If we now compare the coefficients of both sides, we have the following system of equations:

\[\left\{\begin{aligned} 4A + B &= 19 \\ C &= -1 \\ A &= 4 \end{aligned}\right.\]

Luckily for us, we already have two of the solutions, so it follows now that $4(4)+B = 19 \implies B=3$. Therefore, we now see that

\[\frac{19x^2-x+4}{x(1+4x^2)} = \frac{4}{x} + \frac{3x-1}{1+4x^2}\]

Hence, we now see that

\[\int \frac{19x^2-x+4}{x(1+4x^2)}\,dx = \int\frac{4}{x}\,dx + \int\frac{3x-1}{1+4x^2}\,dx = \color{red}{\int\frac{4}{x}\,dx} + \color{blue}{\int\frac{3x}{1+4x^2}\,dx} - \color{green}{\int\frac{1}{1+4x^2}\,dx}\]

The first integral is rather straightforward; you should see that

\[\int\frac{4}{x}\,dx = \color{red}{4\ln|x|+C}\]

Next, for the second integral, we make a substitution: $u=1+4x^2\implies \,du =8x\,dx \implies \dfrac{du}{8}=x\,dx$. Thus,

\[\int\frac{3x}{1+4x^2}\,dx = \frac{3}{8}\int\frac{1}{u}\,du = \frac{3}{8}\ln|u|+C = \color{blue}{\frac{3}{8}\ln(1+4x^2)+C}\]

(Note here that we can drop absolute values since $1+4x^2>0$ for any $x$.)

For the last integral, we need to note that

\[\int\frac{1}{1+4x^2}\,dx = \int\frac{1}{1+(2x)^2}\,dx\]

To integrate, we make the substitution $u=2x\implies \,du = 2\,dx \implies \dfrac{du}{2}=\,dx$. Thus,

\[\int\frac{1}{1+4x^2}\,dx = \frac{1}{2}\int\frac{1}{1+u^2}\,du = \frac{1}{2}\arctan(u)+C = \color{green}{\frac{1}{2}\arctan(2x)+C}\]

Therefore, putting everything together, we have that

\[\int\frac{19x^2-x+4}{x(1+4x^2)}\,dx = 4\ln|x| + \frac{3}{8}\ln(1+4x^2) - \frac{1}{2}\arctan(2x) + C\]

I hope this makes sense!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top