MHB Cilian's question at Yahoo Answers regarding integration by partial fractions

AI Thread Summary
The integral of the function (19x^2 - x + 4) / (x(1 + 4x^2)) is evaluated using partial fractions. The decomposition is expressed as A/x + (Bx + C)/(1 + 4x^2), leading to a system of equations to solve for A, B, and C. The resulting integrals are computed as 4ln|x|, (3/8)ln(1 + 4x^2), and (1/2)arctan(2x). Combining these results gives the final answer: 4ln|x| + (3/8)ln(1 + 4x^2) - (1/2)arctan(2x) + C. This method effectively demonstrates the application of integration by partial fractions.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question:

Cilian said:
Find the integral
\[\int\frac{19x^2-x+4}{x(1+4x^2)}\]

Here is a link to the question:

Integral of ((19x^2)-x+4)/(x(1+4(x^2)))? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Cilian,

We're going to use partial fractions to evaluate this integral. With that said, we note that the partial fraction decomposition will take on the form

\[\frac{19x^2-x+4}{x(1+4x^2)} = \frac{A}{x}+\frac{Bx+C}{1+4x^2}\]

Multiplying both sides by the common denominator yields

\[19x^2-x+4 = A(1+4x^2) + (Bx+C)x\]

We now simplify the right hand side and group like terms to get

\[19x^2-x+4 = (4A+B)x^2+Cx+A\]

If we now compare the coefficients of both sides, we have the following system of equations:

\[\left\{\begin{aligned} 4A + B &= 19 \\ C &= -1 \\ A &= 4 \end{aligned}\right.\]

Luckily for us, we already have two of the solutions, so it follows now that $4(4)+B = 19 \implies B=3$. Therefore, we now see that

\[\frac{19x^2-x+4}{x(1+4x^2)} = \frac{4}{x} + \frac{3x-1}{1+4x^2}\]

Hence, we now see that

\[\int \frac{19x^2-x+4}{x(1+4x^2)}\,dx = \int\frac{4}{x}\,dx + \int\frac{3x-1}{1+4x^2}\,dx = \color{red}{\int\frac{4}{x}\,dx} + \color{blue}{\int\frac{3x}{1+4x^2}\,dx} - \color{green}{\int\frac{1}{1+4x^2}\,dx}\]

The first integral is rather straightforward; you should see that

\[\int\frac{4}{x}\,dx = \color{red}{4\ln|x|+C}\]

Next, for the second integral, we make a substitution: $u=1+4x^2\implies \,du =8x\,dx \implies \dfrac{du}{8}=x\,dx$. Thus,

\[\int\frac{3x}{1+4x^2}\,dx = \frac{3}{8}\int\frac{1}{u}\,du = \frac{3}{8}\ln|u|+C = \color{blue}{\frac{3}{8}\ln(1+4x^2)+C}\]

(Note here that we can drop absolute values since $1+4x^2>0$ for any $x$.)

For the last integral, we need to note that

\[\int\frac{1}{1+4x^2}\,dx = \int\frac{1}{1+(2x)^2}\,dx\]

To integrate, we make the substitution $u=2x\implies \,du = 2\,dx \implies \dfrac{du}{2}=\,dx$. Thus,

\[\int\frac{1}{1+4x^2}\,dx = \frac{1}{2}\int\frac{1}{1+u^2}\,du = \frac{1}{2}\arctan(u)+C = \color{green}{\frac{1}{2}\arctan(2x)+C}\]

Therefore, putting everything together, we have that

\[\int\frac{19x^2-x+4}{x(1+4x^2)}\,dx = 4\ln|x| + \frac{3}{8}\ln(1+4x^2) - \frac{1}{2}\arctan(2x) + C\]

I hope this makes sense!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top