MHB Circular Membrane: Solving $u_{tt} = c^2\nabla^2u$ with Bessel's Equation

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Circular Membrane
Click For Summary
The discussion focuses on solving the wave equation for a circular membrane using Bessel's equation, leading to the Helmholtz equation. The general solution involves Bessel functions and Fourier series, with coefficients determined by initial conditions. A key point of contention is whether the coefficients \(A_{mn}\) and \(B_{mn}\) must equal zero, which is debated among participants. It is clarified that while \(A_{mn} = B_{mn} = 0\) is a trivial solution, it does not necessarily imply that all coefficients must be zero. The conversation emphasizes the importance of understanding the convergence of infinite series in this context.
Dustinsfl
Messages
2,217
Reaction score
5
$u_{tt} = c^2\nabla^2u$ where $\nabla^2 = \frac{1}{r}\frac{\partial }{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2}{\partial\theta^2}$.
Suppose $u(r,\theta,t) = G(r,\theta)e^{i\omega t}$.
Then
$$
-\omega^2Ge^{i\omega t} = c^2\nabla^2Ge^{i\omega t}
$$
which leads to the Helmholtz equation $(\nabla^2G + k^2G = 0)$ where $k^2 = \frac{\omega^2}{c^2}$.
Let $G(r,\theta) = R(r)e^{\pm im\theta}$.
Then
$$
\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial r}\right]Re^{im\theta} + k^2Re^{im\theta} = 0
$$
which leads to
$$
r^2R'' + rR' + (k^2r^2 - m^2)R = 0\quad \text{(Bessel's equation)}.
$$
Therefore, $R(r) = \mathcal{J}_m(kr) = \sum\limits_{j = 0}^{\infty}\frac{(-1)^j}{(j!)^2(k + m)!}\left(\frac{kr}{2}\right)^{2j + m}$.
The circular membrane is of radius $a$ whose edges are fixed.
That is, $R(a) = \mathcal{J}_{mn}(k_{mn}a) = 0$.
Let $z_{mn}$ be the zeros of $J_{mn}$ and $z_{mn} = k_{mn}a\iff k_{mn} = \frac{z_{mn}}{a}$.
Then the form of the general solution is
\begin{alignat*}{3}
u(r,\theta,t) & = & \sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right) \left[A_{mn}\cos m\theta + B_{mn}\sin m\theta\right] \cos\left(z_{mn}\frac{ct}{a}\right)\\
& + & \sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right) \left[C_{mn}\cos m\theta + D_{mn}\sin m\theta\right] \sin\left(z_{mn}\frac{ct}{a}\right)
\end{alignat*}
Using the first initial condition, we have\begin{alignat*}{5}
u(r,\theta,0) & = & \sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right) \left[A_{mn}\cos m\theta + B_{mn}\sin m\theta\right] & = & 0
\end{alignat*}
How can I create a table of the eigenvalues for the Bessel equation in Mathematica?
Would it be
Code:
ClearAll["Global`*"]z = Table[N[BesselJZero[m, n]], {n, 1, 20}, {m, 0, 5}];
z // TableForm
{
 {2.40483, 3.83171, 5.13562, 6.38016, 7.58834, 8.77148},
 {5.52008, 7.01559, 8.41724, 9.76102, 11.0647, 12.3386},
 {8.65373, 10.1735, 11.6198, 13.0152, 14.3725, 15.7002},
 {11.7915, 13.3237, 14.796, 16.2235, 17.616, 18.9801},
 {14.9309, 16.4706, 17.9598, 19.4094, 20.8269, 22.2178},
 {18.0711, 19.6159, 21.117, 22.5827, 24.019, 25.4303},
 {21.2116, 22.7601, 24.2701, 25.7482, 27.1991, 28.6266},
 {24.3525, 25.9037, 27.4206, 28.9084, 30.371, 31.8117},
 {27.4935, 29.0468, 30.5692, 32.0649, 33.5371, 34.9888},
 {30.6346, 32.1897, 33.7165, 35.2187, 36.699, 38.1599},
 {33.7758, 35.3323, 36.8629, 38.3705, 39.8576, 41.3264},
 {36.9171, 38.4748, 40.0084, 41.5207, 43.0137, 44.4893},
 {40.0584, 41.6171, 43.1535, 44.6697, 46.1679, 47.6494},
 {43.1998, 44.7593, 46.298, 47.8178, 49.3204, 50.8072},
 {46.3412, 47.9015, 49.4422, 50.965, 52.4716, 53.963},
 {49.4826, 51.0435, 52.586, 54.1116, 55.6217, 57.1173},
 {52.6241, 54.1856, 55.7296, 57.2577, 58.7708, 60.2702},
 {55.7655, 57.3275, 58.873, 60.4032, 61.9192, 63.4221},
 {58.907, 60.4695, 62.0162, 63.5484, 65.067, 66.5729},
 {62.0485, 63.6114, 65.1593, 66.6932, 68.2142, 69.7229}}
\begin{alignat*}{5}
u(r,\theta,0) & = & 0 & & \\
u_t(r,\theta,0) & = & \delta(\mathbf{x} - \mathbf{x}_0) & = & \delta(r - r_0, \theta - \theta_0) \end{alignat*}
$$
\int_A\delta(\mathbf{x} - \mathbf{x}_0)f(r,\theta)dA = \int_0^{2\pi}\int_0^a\delta(r - r_0, \theta - \theta_0)f(r,\theta)rdrd\theta = f(\mathbf{x}_0)
$$
 
Last edited:
Physics news on Phys.org
$$
\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)A_{mn}\cos m\theta = - \sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)B_{mn}\sin m\theta
$$
Does this imply that $A_{mn} = B_{mn} = 0$? That is my thought.
 
dwsmith said:
$$
\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)A_{mn}\cos m\theta = - \sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)B_{mn}\sin m\theta
$$
Does this imply that $A_{mn} = B_{mn} = 0$? That is my thought.
Putting in my two cents:

Both sums are functions of \theta so the only time you could require that A_{mn} = B_{mn} = 0 would be when cos(m \theta ) = -sin(m \theta).

-Dan
 
topsquark said:
Putting in my two cents:

Both sums are functions of \theta so the only time you could require that A_{mn} = B_{mn} = 0 would be when cos(m \theta ) = -sin(m \theta).

-Dan

Does m being an integer help?
 
dwsmith said:
Does m being an integer help?
Ummm...Not sure what you're trying to say there?

We have the condition that
A_{mn}~cos(m \theta) + B_{mn}~sin(m \theta ) = 0

All I'm saying is that if we have
cos(m \theta) = - sin(m \theta )

tan(m \theta) = -1

etc, etc.
Only certain values of \theta will mandate that the coefficients are zero.

-Dan
 
topsquark said:
Ummm...Not sure what you're trying to say there?

We have the condition that
A_{mn}~cos(m \theta) + B_{mn}~sin(m \theta ) = 0

All I'm saying is that if we have
cos(m \theta) = - sin(m \theta )

tan(m \theta) = -1

etc, etc.
Only certain values of \theta will mandate that the coefficients are zero.

-Dan

Then I am at a loss on solving for the coefficients.
 
Would it be easier perhaps to start with the second initial condition?
If this is correct(below)
$$
C_{0n} = \frac{\int_0^a \int_0^{2\pi}r \delta(r - r_0,\theta - \theta_0) \mathcal{J}_{0n} \left(z_{0n}\frac{r}{a}\right)d\theta dr}{z_{0n}ac\pi\mathcal{J}_{1}^2(z_{0n})} = \frac{\mathcal{J}_{0n} \left(z_{0n}\frac{r_0}{a}\right)}{z_{0n}ac\pi \mathcal{J}_{1}^2(z_{0n})},
$$
$$
C_{mn} = \frac{2\int_0^a \int_0^{2\pi}r \delta(r - r_0,\theta - \theta_0) \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right)\cos m\theta d\theta dr}{z_{mn}ac\pi\mathcal{J}_{m + 1}^2(z_{mn})} = \frac{2\mathcal{J}_{mn} \left(z_{mn}\frac{r_0}{a}\right)\cos m\theta_0}{z_{mn}ac\pi\mathcal{J}_{m + 1}^2(z_{mn})}\quad m\neq 0,
$$
and
$$
D_{mn} = \frac{2\int_0^a \int_0^{2\pi}r \delta(r - r_0,\theta - \theta_0) \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right) \sin m\theta d\theta dr}{z_{mn}ac\pi \mathcal{J}_{m + 1}^2(z_{mn})} = \frac{2\mathcal{J}_{mn} \left(z_{mn}\frac{r_0}{a}\right)\sin m\theta_0}{z_{mn}ac\pi\mathcal{J}_{m + 1}^2(z_{mn})}.
$$
 
Since we have the double Bessel-Fourier series, A = B = 0 is the answer unless I am missing something I am sure it is 0.
 
dwsmith said:
$$
\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)A_{mn}\cos m\theta = - \sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)B_{mn}\sin m\theta
$$
Does this imply that $A_{mn} = B_{mn} = 0$? That is my thought.

Hi dwsmith, :)

No. This does not imply that \(A_{mn} = B_{mn} = 0\). However \(A_{mn} = B_{mn} = 0\) is a trivial solution to,

\[\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)A_{mn}\cos m\theta = - \sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)B_{mn}\sin m\theta\]

Note that if you have two infinite series \(\sum_{n=1}^{\infty}a_{n}\) and \(\sum_{n=1}^{\infty}b_{n}\) equal to one another means that the two series will converge to the same value not that \(a_{n}=b_{n}\).

\[\sum_{n=1}^{\infty}a_{n}=\sum_{n=1}^{\infty}b_{n} \not\Rightarrow a_{n}=b_{n}\]

Kind Regards,
Sudharka.
 
  • #10
Sudharaka said:
Hi dwsmith, :)

No. This does not imply that \(A_{mn} = B_{mn} = 0\). However \(A_{mn} = B_{mn} = 0\) is a trivial solution to,

\[\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)A_{mn}\cos m\theta = - \sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn}\left(z_{mn}\frac{r}{a}\right)B_{mn}\sin m\theta\]

Note that if you have two infinite series \(\sum_{n=1}^{\infty}a_{n}\) and \(\sum_{n=1}^{\infty}b_{n}\) equal to one another means that the two series will converge to the same value not that \(a_{n}=b_{n}\).

\[\sum_{n=1}^{\infty}a_{n}=\sum_{n=1}^{\infty}b_{n} \not\Rightarrow a_{n}=b_{n}\]

Kind Regards,
Sudharka.

It is true because of
dwsmith said:
Since we have the double Bessel-Fourier series, A = B = 0 is the answer unless I am missing something I am sure it is 0.

See http://www.mathhelpboards.com/f13/integrating-delta-bessel-function-2655/ for the coefficients of the double Bessel-Fourier series.
 

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K