Clarification on PV=nRT question.

  • Thread starter Thread starter Rizke
  • Start date Start date
  • Tags Tags
    Pv=nrt
Click For Summary
SUMMARY

The discussion centers on calculating the initial mass of oxygen in a tank using the ideal gas law (PV=nRT). The welder's tank has a volume of 7.50×10−2 m3, filled with oxygen at a gauge pressure of 3.00×105 Pa and a temperature of 36.5 °C. To find the correct mass, the absolute pressure must be calculated by adding atmospheric pressure (approximately 100,000 Pa) to the gauge pressure, resulting in an absolute pressure of 4.00×105 Pa. The correct initial mass of oxygen is confirmed to be 0.374 kg.

PREREQUISITES
  • Understanding of the ideal gas law (PV=nRT)
  • Knowledge of gauge pressure versus absolute pressure
  • Familiarity with unit conversions (e.g., Celsius to Kelvin)
  • Basic understanding of molar mass calculations
NEXT STEPS
  • Learn about the differences between gauge pressure and absolute pressure in gas calculations
  • Study the ideal gas law applications in real-world scenarios
  • Explore the implications of temperature changes on gas behavior
  • Investigate the effects of leaks on gas mass calculations
USEFUL FOR

Students and professionals in chemistry, physics, and engineering fields, particularly those involved in gas calculations and pressure measurements.

Rizke
Messages
5
Reaction score
1
Does not use the template because it was originally posted in a non-homework forum
A welder using a tank of volume 7.50×10^−2 m^3 fills it with oxygen (with a molar mass of 32.0 g/mol ) at a gauge pressure of 3.00×10^5 Pa and temperature of 36.5 ∘C. The tank has a small leak, and in time some of the oxygen leaks out. On a day when the temperature is 21.0 ∘C, the gauge pressure of the oxygen in the tank is 1.85×10^5 Pa . Find the initial mass of oxygen. correct answer : .374 kg
I can't seem to get this right. i even worked backwards with that answer and still. I read in a similar thread that i need the absolute value of gas pressure. but not sure how to apply

My Attempt: PV=nRT
P = 3.0e^5 - in pascals
V = 7.5e^-2
R = 8.3144621
T = (36.5 C + 273.15)= 309.65 K
(3.0e^5)(7.5e^-2) / (8.3144621)(309.65) = n => n= 8.7393 moles
mass = 8.7393* 32 = > 279.658 grams. but .280 kg is not .374 kg.
So yeah I am puzzled.
 
Last edited:
Physics news on Phys.org
Rizke said:
A welder using a tank of volume 7.50×10^−2 m^3 fills it with oxygen (with a molar mass of 32.0 g/mol ) at a gauge pressure of 3.00×10Pa and temperature of 36.5 ∘C. The tank has a small leak, and in time some of the oxygen leaks out. On a day when the temperature is 21.0 ∘C, the gauge pressure of the oxygen in the tank is 1.85×105 Pa . Find the initial mass of oxygen. correct answer : .374 kg
I can't seem to get this right. i even worked backwards with that answer and still. I read in a similar thread that i need the absolute value of gas pressure. but not sure how to apply

My Attempt: PV=nRT
P = 3.0e^5 - in pascals
V = 7.5e^-2
R = 8.3144621
T = (36.5 C + 273.15)= 309.65 K
(3.0^5)(7.5e^-2) / (8.3144621)(309.65) = n => n= 8.7393 moles
mass = 8.7393* 32 = > 279.658 grams. but .280 kg is not .374 kg.
So yeah I am puzzled.
Do you know the definition of gauge pressure?
 
oh that's right a gauge will read zero, but there is actually the ATM pressure that is on the gauge. which is like 15 right? so i have to subtract that pressure after i convert it to pascals. or is this not right? Thanks for the quick reply.
 
Rizke said:
oh that's right a gauge will read zero, but there is actually the ATM pressure that is on the gauge. which is like 15 right? so i have to subtract that pressure after i convert it to pascals. or is this not right? Thanks for the quick reply.
Add 100000 Pa to the gauge pressure to get the absolute pressure.
 
P = (3.0e^5)+100000 = 4.0e^5
(4.0e^5)(7.5e^-2) / (8.3144621)(309.65) = 11.6524 moles => 11.65*32 = 372.89 grams => .373 kg
Awesome Thank you!
p.s can i always add 100000 Pa for absolute pressure? that is if i already convert ATM to PA.
 
Rizke said:
P = (3.0e^5)+100000 = 4.0e^5
(4.0e^5)(7.5e^-2) / (8.3144621)(309.65) = 11.6524 moles => 11.65*32 = 372.89 grams => .373 kg
Awesome Thank you!
p.s can i always add 100000 Pa for absolute pressure? that is if i already convert ATM to PA.
If the actual atmospheric pressure is known (rather than 100000 Pa), you add that to get the absolute pressure. Otherwise, as an estimate, you use 100000 Pa.
 
Okay i think i finally understand why we add to the pressure. Assuming the welder in this problem is at a location where there is one ATM pressure, the gauge does not account for this. So we need to add that 1 ATM, or 101325 PA to the final pressure reading. i get .374 kg
 
  • Like
Likes Chestermiller

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
16K
  • · Replies 3 ·
Replies
3
Views
8K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
4K
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
15K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K